改进沙猫群优化的BP神经网络ISCSO-BP(时序预测)的Matlab实现

2024-03-11 08:28

本文主要是介绍改进沙猫群优化的BP神经网络ISCSO-BP(时序预测)的Matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

改进沙猫群优化的BP神经网络(ISCSO-BP)是一种结合了改进的沙猫群优化算法(Improved Sand Cat Swarm Optimization, ISCSO)和反向传播(Back Propagation, BP)神经网络的模型,旨在提高时序预测的准确性和效率。这种模型尤其适用于处理复杂的时间序列数据,通过自动调整神经网络的阈值和权值,来提升预测性能。下面是对ISCSO-BP的简要介绍:

沙猫群优化算法(SCSO)
沙猫群优化算法是一种启发式算法,灵感来源于沙猫在寻找食物和躲避天敌时的行为模式。该算法通过模拟沙猫群体的社会行为来解决优化问题,特别是在寻找全局最优解方面显示出良好的性能。它通过模拟沙猫的搜索、跟踪和攻击等行为来调整搜索策略,平衡探索和利用过程。

改进的沙猫群优化算法(ISCSO)
改进的沙猫群优化算法对原始SCSO算法进行了改进,以提高其在处理复杂优化问题时的效率和准确性。改进包括把原先的线性参数rg变为非线性自适应参数,引入柯西变异策略,引入最优邻域扰动策略来增强算法的全局搜索能力和避免陷入局部最优解。

BP神经网络
反向传播神经网络是一种经典的多层前馈神经网络,通过反向传播算法进行训练。BP算法通过计算输出误差对权重的梯度,并利用这个信息来更新网络中的权重和偏置,从而最小化误差函数。

ISCSO-BP模型
在ISCSO-BP模型中,ISCSO算法用于优化BP神经网络的权重和超参数,如学习率、隐藏层的数量和大小等。这种结合方式旨在自动化神经网络的训练过程,减少人工调参的工作量,并提高模型在复杂时序预测任务中的性能。

时序预测应用
ISCSO-BP模型特别适用于需要处理长期依赖、非线性和高维度特征的时间序列预测任务。通过改进的沙猫群优化算法,ISCSO-BP能够有效地探索参数空间,找到最优的网络结构和权重配置,从而提高预测的准确性和可靠性。

结论
改进沙猫群优化的BP神经网络(ISCSO-BP)提供了一种高效的方法来处理时间序列预测问题,特别是在需要自动化模型选择和参数优化的场景中。通过结合ISCSO的全局搜索能力和BP神经网络的强大建模能力,ISCSO-BP能够提供一种有效的解决方案,适用于多种时序预测任务。
部分源代码:

%% 优化器
popsize = 25;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为权值的个数
%  hiddennum + outputnum 为阈值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度
fobj = @(x)funBP(x,inputnum,hiddennum,outputnum,Pn_train,Tn_train,Pn_test,Tn_test);
[Best_Score,BestFit,Convergence_curve]=ISCSO(popsize,Max_iteration,lb,ub,dim,fobj);
[fitness,net] = funBP(BestFit,inputnum,hiddennum,outputnum,Pn_train,Tn_train,Pn_test,Tn_test);
figure
plot(Convergence_curve,'Color','r','linewidth',1.5)
title('迭代曲线')
xlabel('迭代次数');
ylabel('适应度值');
legend('ISCSO-BP')
grid on;
saveas(gcf, '../ISCSO_BP收敛曲线', 'png');

在这里插入图片描述
在这里插入图片描述

完整源代码:ISCSO-BP代码

这篇关于改进沙猫群优化的BP神经网络ISCSO-BP(时序预测)的Matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797246

相关文章

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合