本文主要是介绍拓端tecdat|R语言中生存分析模型与时间依赖性ROC曲线可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
最近我们被客户要求撰写关于生存分析模型的研究报告,包括一些图形和统计输出。
视频:R语言生存分析原理与晚期肺癌患者分析案例
R语言生存分析Survival analysis原理与晚期肺癌患者分析案例
人们通常使用接收者操作特征曲线(ROC)进行二元结果逻辑回归。但是,流行病学研究中感兴趣的结果通常是事件发生时间。使用随时间变化的时间依赖性ROC可以更全面地描述这种情况下的预测模型。
时间依赖性ROC定义
令 Mi为用于死亡率预测的基线(时间0)标量标记。 当随时间推移观察到结果时,其预测性能取决于评估时间 t。直观地说,在零时间测量的标记值应该变得不那么相关。因此,ROC测得的预测性能(区分)是时间t的函数 。
累积病例
累积病例/动态ROC定义了在时间t 处的阈值c处的 灵敏度和特异性, 如下所示。
累积灵敏度将在时间t之前死亡的视为分母(疾病),而将标记值高于 c 的作为真实阳性(疾病阳性)。动态特异性将在时间t仍然活着作为分母(健康),并将标记值小于或等于 c 的那些作为真实阴性(健康中的阴性)。将阈值 c 从最小值更改为最大值会在时间t处显示整个ROC曲线 。
新发病例
新发病例ROC1在时间t 处以阈值 c定义灵敏度和特异性, 如下所示。
累积灵敏度将在时间t处死亡的人 视为分母(疾病),而将标记值高于 Ç 的人视为真实阳性(疾病阳性)。
数据准备
我们以数据 包中的dataset3survival
为例。事件发生的时间就是死亡的时间。Kaplan-Meier图如下。
## 变成data_frame
data <- as_data_frame(data)
## 绘图
plot(survfit(Surv(futime, fustat) ~ 1,data = data)
可视化结果:
在数据集中超过720天没有发生任何事件。
## 拟合cox模型
coxph(formula = Surv(futime, fustat) ~ pspline(age, df = 4) +
##获得线性预测值predict(coxph1, type = "lp")
累积病例
实现了累积病例
## 定义一个辅助函数,以在不同的时间进行评估
ROC_hlp <- function(t) {survivalROC(Stime status marker predict.time = t,method = "NNE",span = 0.25 * nrow(ovarian)^(-0.20))
}
## 每180天评估一次
ROC_data <- data_frame(t = 180 * c(1,2,3,4,5,6)) %>%mutate(survivalROC = map(t, survivalROC_helper),## 提取AUCauc = map_dbl(survivalROC, magrittr::extract2, "AUC"),## 在data_frame中放相关的值df_survivalROC = map(survivalROC, function(obj) {## 绘图ggplot(mapping = aes(x = FP, y = TP)) +geom_point() +geom_line() +facet_wrap( ~ t) +
可视化结果:
180天的ROC看起来是最好的。因为到此刻为止几乎没有事件。在最后观察到的事件(t≥720)之后,AUC稳定在0.856。这种表现并没有衰退,因为高风险分数的人死了。
新发病例
实现新发病例
## 定义一个辅助函数,以在不同的时间进行评估## 每180天评估一次## 提取AUCauc = map_dbl(risksetROC, magrittr::extract2, "AUC"),## 在data_frame中放相关的值df_risksetROC = map(risksetROC, function(obj) {## 标记栏marker <- c(-Inf, obj[["marker"]], Inf)## 绘图ggplot(mapping = aes(x = FP, y = TP)) +geom_point() +geom_line() +geom_label(data = risksetROC_data %>% dplyr::select(t,auc) %>% unique,facet_wrap( ~ t) +
可视化结果:
这种差异在后期更为明显。最值得注意的是,只有在每个时间点处于风险集中的个体才能提供数据。所以数据点少了。表现的衰退更为明显,也许是因为在那些存活时间足够长的人中,时间零点的风险分没有那么重要。一旦没有事件,ROC基本上就会趋于平缓。
结论
总之,我们研究了时间依赖的ROC及其R实现。累积病例ROC可能与风险 (累积发生率)预测模型的概念更兼容 。新发病例ROC可用于检查时间零标记在预测后续事件时的相关性。
参考
-
Heagerty,Patrick J. and Zheng,Yingye, Survival Model Predictive Accuracy and ROC Curves,Biometrics,61(1),92-105(2005). doi:10.1111 / j.0006-341X.2005.030814.x.
这篇关于拓端tecdat|R语言中生存分析模型与时间依赖性ROC曲线可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!