拓端tecdat|R语言中生存分析模型与时间依赖性ROC曲线可视化

本文主要是介绍拓端tecdat|R语言中生存分析模型与时间依赖性ROC曲线可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于生存分析模型的研究报告,包括一些图形和统计输出。

视频:R语言生存分析原理与晚期肺癌患者分析案例

R语言生存分析Survival analysis原理与晚期肺癌患者分析案例

人们通常使用接收者操作特征曲线(ROC)进行二元结果逻辑回归。但是,流行病学研究中感兴趣的结果通常是事件发生时间。使用随时间变化的时间依赖性ROC可以更全面地描述这种情况下的预测模型。

时间依赖性ROC定义

令 Mi为用于死亡率预测的基线(时间0)标量标记。 当随时间推移观察到结果时,其预测性能取决于评估时间 t。直观地说,在零时间测量的标记值应该变得不那么相关。因此,ROC测得的预测性能(区分)是时间t的函数 。 

累积病例

累积病例/动态ROC定义了在时间t 处的阈值c处的 灵敏度和特异性,  如下所示。

累积灵敏度将在时间t之前死亡的视为分母(疾病),而将标记值高于 c 的作为真实阳性(疾病阳性)。动态特异性将在时间t仍然活着作为分母(健康),并将标记值小于或等于 c 的那些作为真实阴性(健康中的阴性)。将阈值 c 从最小值更改为最大值会在时间t处显示整个ROC曲线 。

新发病例

新发病例ROC1在时间t 处以阈值 c定义灵敏度和特异性,  如下所示。

累积灵敏度将在时间t处死亡的人  视为分母(疾病),而将标记值高于 Ç 的人视为真实阳性(疾病阳性)。

数据准备

我们以数据 包中的dataset3survival为例。事件发生的时间就是死亡的时间。Kaplan-Meier图如下。

## 变成data_frame
data <- as_data_frame(data)
## 绘图
plot(survfit(Surv(futime, fustat) ~ 1,data = data)

可视化结果:

在数据集中超过720天没有发生任何事件。


## 拟合cox模型
coxph(formula = Surv(futime, fustat) ~ pspline(age, df = 4) + 
##获得线性预测值predict(coxph1, type = "lp")

累积病例

实现了累积病例


## 定义一个辅助函数,以在不同的时间进行评估
ROC_hlp <- function(t) {survivalROC(Stime        status        marker        predict.time = t,method       = "NNE",span = 0.25 * nrow(ovarian)^(-0.20))
}
## 每180天评估一次
ROC_data <- data_frame(t = 180 * c(1,2,3,4,5,6)) %>%mutate(survivalROC = map(t, survivalROC_helper),## 提取AUCauc = map_dbl(survivalROC, magrittr::extract2, "AUC"),## 在data_frame中放相关的值df_survivalROC = map(survivalROC, function(obj) {## 绘图ggplot(mapping = aes(x = FP, y = TP)) +geom_point() +geom_line() +facet_wrap( ~ t) +

可视化结果:

180天的ROC看起来是最好的。因为到此刻为止几乎没有事件。在最后观察到的事件(t≥720)之后,AUC稳定在0.856。这种表现并没有衰退,因为高风险分数的人死了。

新发病例

实现新发病例


## 定义一个辅助函数,以在不同的时间进行评估## 每180天评估一次## 提取AUCauc = map_dbl(risksetROC, magrittr::extract2, "AUC"),## 在data_frame中放相关的值df_risksetROC = map(risksetROC, function(obj) {## 标记栏marker <- c(-Inf, obj[["marker"]], Inf)## 绘图ggplot(mapping = aes(x = FP, y = TP)) +geom_point() +geom_line() +geom_label(data = risksetROC_data %>% dplyr::select(t,auc) %>% unique,facet_wrap( ~ t) +

可视化结果:

这种差异在后期更为明显。最值得注意的是,只有在每个时间点处于风险集中的个体才能提供数据。所以数据点少了。表现的衰退更为明显,也许是因为在那些存活时间足够长的人中,时间零点的风险分没有那么重要。一旦没有事件,ROC基本上就会趋于平缓。

结论

总之,我们研究了时间依赖的ROC及其R实现。累积病例ROC可能与风险 (累积发生率)预测模型的概念更兼容 。新发病例ROC可用于检查时间零标记在预测后续事件时的相关性。

参考

  1. Heagerty,Patrick J. and Zheng,Yingye,  Survival Model Predictive Accuracy and ROC Curves,Biometrics,61(1),92-105(2005). doi:10.1111 / j.0006-341X.2005.030814.x.


这篇关于拓端tecdat|R语言中生存分析模型与时间依赖性ROC曲线可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796905

相关文章

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit