基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI

2024-03-11 00:08

本文主要是介绍基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文题目:MDF-SA-DDI: predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and ransformer self-attention mechanism

论文来源: Briefings in Bioinformatics,00(00), 2021,1–13

网址:https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbab421/6406700?redirectedFrom=fulltext

代码: GitHub - ShenggengLin/MDF-SA-DDI

主要内容:使用多源药物融合,多源特征融合和Transformer进行药物互作预测

  • 四个网络+多头自注意力机制
    • 孪生网络
    • 卷积神经网络
    • 两个自动编码器

药物互作相关

  • 为什么要进行药物互作的研究
    • 大多数人类疾病病理复杂,对单一的药物都有抗药性。使用联合药物治疗可以有效提高药效,降低耐药性。
    • 但是,不同的药物之间可能会发生相互作用(drug–drug interaction, DDI),可能会导致不良事件。
    • 而每两种药都进行试验验证过于昂贵,因而使用计算机进行模拟的研究显得比较重要了。
  • 主流方法:(1)基于机器学习的方法;(2)基于深度学习的方法;(3)基于矩阵分解的方法;(4)基于网络扩散的方法;(5)基于集成学习的方法;(6)基于文献或文本挖掘的方法。
  • 以往方法的问题
    1. 大多基于深度学习技术,将两个药物向量连接在一起预测DDI事件,而没有尝试其他方法来融合药物对的信息
    2. 大多数方法在预测已知药物之间未观察到的相互作用方面表现良好,很难预测新药之间未被观察到的相互作用

提出方法:MDF-SA-DDI

  • 具体内容
    1. 孪生网络(Siamese Network,SN),将两种药物的特征输入其中,得到的两个向量作为药物对的新特征。需要注意的是,这两个向量表示的是每个药物各自的特征
    2. 卷积神经网络(CN),将两个药物特征拼接,然后将其进行卷积,得到药物对的潜在特征
    3. 自动编码器(AE1),将两个特征向量拼接起来,然后通过自动编码器得到特征
    4. 自动编码器(AE2),将两个特征向量按照元素相加,然后通过自动编码器得到特征
    • 自注意力层:将上述四个向量,过一个多头自注意力模块进行特征融合
    • 全连接:将上述得到的特征过一个全连接层,得到最后的药物互作事件

  • 由于数据集特征过多,直接使用容易得到维数灾难,基于类似药物可能与相同的药物相互作用的假设,文章直接使用了Jaccard近似

实验及结果

  • 三种实验,相应任务中的新药表示在训练集中缺失,但在测试集中存在
    1. 预测已知药物之间未观察到的相互作用事件(任务1)
    2. 预测已知药物与新药之间的相互作用事件(任务2)
    3. 预测新药之间的相互作用事件(任务3)

这篇关于基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795965

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行