代码随想录算法训练营Day41 | 背包问题 一维、背包问题 二维、LeetCode416. 分割等和子集

本文主要是介绍代码随想录算法训练营Day41 | 背包问题 一维、背包问题 二维、LeetCode416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01背包问题 二维dp数组

背包问题:用若干件物品装入固定容量的背包,使得背包内物品价值最大,我们有若干件物品体积的数组,也有物品价值的数组。

01背包问题:每件物品只有一个。

在解决背包问题时,明确递归五部曲:
1、dp[i][j]数组含义:从[0,i]个物品放在容量为j的背包中获得的最大价值。
2、递推公式:分两种情况(1)没有放物品i:dp[i][j]=dp[i-1][j];(2)放了物品i:dp[i][j]=dp[i-1][j-weight[i]]。(这个思路很难想)那么递推公式就是取其中的最大值。
3、初始化:根据数组含义,以及递推公式,需要初始化第一行和第一列。
4、遍历顺序:由于使用二维数组,遍历顺序是从前往后,并且先遍历横坐标(物品)还是先遍历纵坐标(背包)是都可以的。
5、打印dp数组。

本题在力扣上没有原题,所以贴卡哥代码如下:

//二维dp数组实现
#include <bits/stdc++.h>
using namespace std;int n, bagweight;// bagweight代表行李箱空间
void solve() {vector<int> weight(n, 0); // 存储每件物品所占空间vector<int> value(n, 0);  // 存储每件物品价值for(int i = 0; i < n; ++i) {cin >> weight[i];}for(int j = 0; j < n; ++j) {cin >> value[j];}// dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));// 初始化, 因为需要用到dp[i - 1]的值// j < weight[0]已在上方被初始化为0// j >= weight[0]的值就初始化为value[0]for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}for(int i = 1; i < weight.size(); i++) { // 遍历科研物品for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量// 如果装不下这个物品,那么就继承dp[i - 1][j]的值if (j < weight[i]) dp[i][j] = dp[i - 1][j];// 如果能装下,就将值更新为 不装这个物品的最大值 和 装这个物品的最大值 中的 最大值// 装这个物品的最大值由容量为j - weight[i]的包任意放入序号为[0, i - 1]的最大值 + 该物品的价值构成else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;
}int main() {while(cin >> n >> bagweight) {solve();}return 0;
}

01背包问题 一维dp数组

使用二维dp数组时,本行dp数组的值是由上一行dp数组的值得到,因为我们就可以只维护一行dp数组来不断更新最新的一行数据。

贴卡哥代码如下,与二维dp数组的区别在于初始化(全赋值为0)和遍历顺序上,遍历顺序中,必须先遍历物品再遍历背包容量,因为是要不断更新行,在遍历背包容量时要从后往前遍历,因为由递推公式可以得到,当前值更新需要用到左上角和上面的值,为了保证左上角的值不被提前更新覆盖,我们需要从后往前遍历。

// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;int main() {// 读取 M 和 Nint M, N;cin >> M >> N;vector<int> costs(M);vector<int> values(M);for (int i = 0; i < M; i++) {cin >> costs[i];}for (int j = 0; j < M; j++) {cin >> values[j];}// 创建一个动态规划数组dp,初始值为0vector<int> dp(N + 1, 0);// 外层循环遍历每个类型的研究材料for (int i = 0; i < M; ++i) {// 内层循环从 N 空间逐渐减少到当前研究材料所占空间for (int j = N; j >= costs[i]; --j) {// 考虑当前研究材料选择和不选择的情况,选择最大值dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);}}// 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值cout << dp[N] << endl;return 0;
}

LeetCode416. 分割等和子集 

使用暴力回溯,代码如下,会发现超时了,因此考虑用动态规划。

class Solution {
public:int path_sum = 0;int sum = 0;bool backtracking(vector<int>& nums,int startIndex){if(path_sum*2 == sum){return true;}else if(startIndex>=nums.size()){return false;}for(int i=startIndex;i<nums.size();i++){path_sum += nums[i];if(path_sum*2>sum){path_sum -= nums[i];break;}bool res = backtracking(nums,i+1);if(res) return true;path_sum -= nums[i];}return false;}bool canPartition(vector<int>& nums) {for(int i=0;i<nums.size();i++){sum += nums[i];}sort(nums.begin(),nums.end());return backtracking(nums,0);}
};

本题动态规划的思路是将这道题抽象为一个01背包问题:nums数组里面的数即为物品的重量,看他是否能装满target容量的背包,这里target即为原数组总和的一半。

那么每个物品的价值也可以用nums[i]表示,如果恰巧能装满,则dp[target]=target,如果在中途就出现了dp数组的值=target,那么也可以直接输出true。

代码如下:时间复杂度O(n^2);空间复杂度O(n)。

class Solution {
public:int sum = 0;bool canPartition(vector<int>& nums) {for(int i=0;i<nums.size();i++){sum += nums[i];}if(sum%2==1) return false;vector<int> dp(sum/2+1,0);for(int i=0;i<nums.size();i++){for(int j=sum/2;j>=nums[i];j--){dp[j] = max(dp[j],dp[j-nums[i]]+nums[i]);if(dp[j]==sum/2) return true;}}return false;}
};

这篇关于代码随想录算法训练营Day41 | 背包问题 一维、背包问题 二维、LeetCode416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795273

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放