代码随想录day36:动态规划part4,背包问题

2024-03-10 19:12

本文主要是介绍代码随想录day36:动态规划part4,背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • day36:动态规划part4,背包问题
      • 01背包
      • 416.分割等和子集

day36:动态规划part4,背包问题

01背包

https://kamacoder.com/problempage.php?pid=1046

二维数组版本:

dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

import java.util.*;class Main {public static void main(String[] args) {Scanner in = new Scanner(System.in);int m = in.nextInt();int n = in.nextInt();int[] values = new int[m];int[] weights = new int[m];for (int i = 0; i < m; i++) weights[i] = in.nextInt();for (int i = 0; i < m; i++) values[i] = in.nextInt();int[][] dp = new int[m][n + 1];for (int i = weights[0]; i <= n; i++) dp[0][i] = values[0];for (int i = 1; i < m; i++) {for (int j = 1; j <= n; j++) {if (j < weights[i])dp[i][j] = dp[i - 1][j];elsedp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weights[i]] + values[i]);}}System.out.println(dp[m - 1][n]);}
}

压缩为一维滚动数组版本:

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

import java.util.*;class Main {public static void main(String[] args) {Scanner in = new Scanner(System.in);int m = in.nextInt();int n = in.nextInt();int[] values = new int[m];int[] weights = new int[m];for (int i = 0; i < m; i++) weights[i] = in.nextInt();for (int i = 0; i < m; i++) values[i] = in.nextInt();int[] dp = new int[n + 1];for (int i = 0; i < m; i++) {for (int j = n; j >= weights[i]; j--)dp[j] = Math.max(dp[j], dp[j - weights[i]] + values[i]);}System.out.println(dp[n]);}
}

416.分割等和子集

01背包应用

class Solution {public boolean canPartition(int[] nums) {int n = nums.length;int sum = 0;for (int num : nums) sum += num;if (sum % 2 == 1) return false;int target = sum / 2;int[] dp = new int[target + 1];for (int i = 0; i < n; i++) {for (int j = target; j >= nums[i]; j--)dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);if (dp[target] == target) return true;}return false;}
}

这篇关于代码随想录day36:动态规划part4,背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795243

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来