LLM Drift(漂移), Prompt Drift Cascading(级联)

2024-03-10 10:36

本文主要是介绍LLM Drift(漂移), Prompt Drift Cascading(级联),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:LLM Drift, Prompt Drift & Cascading

提示链接可以手动或自动执行;手动需要通过 GUI 链构建工具手工制作链。自治代理在执行时利用可用的工具动态创建链。这两种方法都容易受到级联、LLM 和即时漂移的影响。

2024 年 2 月 23 日

在讨论大型语言模型(LLM)时,术语“LLM漂移”、“提示漂移”和“级联漂移”通常指的是模型性能随时间或条件变化的情况。这些术语涉及不同的概念,但都与模型的稳定性和可靠性有关。
1. **LLM漂移**:
   这指的是大型语言模型的性能随着时间的推移而逐渐变化的现象。这种漂移可能是由于模型的训练数据随时间而变化、模型的权重调整、外部信息的影响或其他因素造成的。LLM漂移可能会导致模型的行为和输出发生变化,有时这些变化可能是不希望发生的。
2. **提示漂移**:
   提示漂移是指在给定相同提示的情况下,模型输出随时间变化的现象。这可能是由于模型的内部变化或提示本身的微小变化导致的。提示漂移可能会影响模型的可靠性和一致性。
3. **级联漂移**:
   级联漂移是指在多阶段或层次的任务中,一个阶段的输出影响下一个阶段的输入,从而导致整个任务链的性能下降。例如,在一个级联的问答系统中,如果第一个阶段(问题生成)的输出存在漂移,那么第二个阶段(答案生成)的性能可能会受到影响。
为了解决这些问题,研究人员和开发者可能会采取一系列措施,如定期评估模型的性能、使用更稳定的训练数据、改进模型架构或实施更严格的质量控制措施。通过这些方法,可以减少漂移现象,提高模型的稳定性和可靠性。

LLMs漂移

LLM 漂移是指 LLM 反应在相对较短的时间内发生的明确变化。这与LLMs本质上是不确定的或与轻微的即时工程措辞变化无关;而是对LLMs的根本性改变。

最近的一项研究发现,在四个月的时间里,GPT-4 和 GPT-3.5 的反应准确性在积极方面波动很大,但更令人担忧的是……消极方面

研究发现,GPT-3.5 和 GPT-4 差异显着,并且在某些任务上存在性能下降。

我们的研究结果强调了持续监控LLMs行为的必要性。-来源

下图显示了四个月内模型准确性的波动。在某些情况下,弃用是相当明显的,准确率损失超过 60%。

来源

迅速漂移

LLMs的输出是不确定的,这意味着同一LLMs在不同时间的精确输入很可能会随着时间的推移产生不同的响应。

从本质上讲,这不是问题,措辞可以不同,但​​基本事实保持不变。

然而,在某些情况下,LLMs的反应会出现偏差。例如,LLMs已被弃用,并且通常需要迁移,正如我们最近在 OpenAI 中看到的,弃用了许多模型。因此,提示保持不变,但底层模型引用发生了变化。

推理时注入提示的数据有时也可能不同。可以说,所有这些因素都会导致一种称为即时漂移的现象。

提示漂移是指由于模型更改、模型迁移或推理时提示注入数据的变化,提示随着时间的推移会产生不同响应的现象。

引起快速漂移的原因

  • 受模型启发的切线
  • 问题提取不正确
  • LLM 的随机性和创造性的惊喜

出现了提示管理和测试接口,例如ChainForge,最近 LangChain 推出了LangSmith ,以及Vellum等商业产品。

确保在大型语言模型迁移/弃用之前可以测试生成应用程序(Gen-Apps)有明确的市场需求。

如果一个模型在很大程度上与底层的LLMs无关,那就更好了。实现这一目标的一个途径是利用大型语言模型的上下文学习 (ICL) 功能。

级联

级联是指链中的一个节点引入异常或偏差,并且这种意外异常被转移到下一个节点,在下一个节点,异常很可能会加剧。

每个节点的输出都越来越偏离预期结果。

这种现象通常称为级联。

考虑下图:

  1. 在链式应用程序中,用户输入可能是意外的或未计划的,因此从节点产生不可预见的输出。
  2. 前一个节点的输出可能不准确或产生一定程度的偏差,这种偏差在当前节点中会加剧。
  3. 由于 LLM 具有不确定性,因此 LLM 响应也可能是意外的。第三点是可以引入即时漂移或 LLM 漂移的地方。
  4. 然后节点2的输出被结转并导致偏差的级联。

结束语

不应孤立地看待即时链接,而应将即时工程视为由多个分支组成的学科。

提示 LLM 时遵循的措辞或技术也很重要,并且对输出的质量有明显的影响。

即时工程是链接的基础,即时工程的学科非常简单且易于理解。

然而,随着 LLM 领域的发展,提示正在变得可编程(通过 RAG 进行模板和上下文注入),并纳入日益复杂的结构中。

因此,链接受到代理、管道、思想链推理等元素的支持。

这篇关于LLM Drift(漂移), Prompt Drift Cascading(级联)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793968

相关文章

Prompt - 将图片的表格转换成Markdown

Prompt - 将图片的表格转换成Markdown 0. 引言1. 提示词2. 原始版本 0. 引言 最近尝试将图片中的表格转换成Markdown格式,需要不断条件和优化提示词。记录一下调整好的提示词,以后在继续优化迭代。 1. 提示词 英文版本: You are an AI assistant tasked with extracting the content of

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

LLM应用实战: 产业治理多标签分类

数据介绍 标签体系 产业治理方面的标签体系共计200+个,每个标签共有4个层级,且第3、4层级有标签含义的概括信息。 原始数据 企业官网介绍数据,包括基本介绍、主要产品等 企业专利数据,包括专利名称和专利摘要信息,且专利的数据量大。 LLM选型 经调研,采用Qwen2-72B-Instruct-GPTQ-Int4量化版本,占用显存更少,且效果与非量化相当,

LLM大模型教程:langchain 教程

软件安装 pip install pymupdfpip install langchainpip install langchain-cliconda install -c pytorch -c nvidia faiss-gpu=1.7.4 mkl=2021 blas=1.0=mkl 由于langchain不支持qwen模型,我们需要自定义模型 from typing import A

LLM模型:代码讲解Transformer运行原理

视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torchimport tiktokenfrom wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果可用),否则使用CPU#

[论文笔记] LLM大模型剪枝篇——2、剪枝总体方案

https://github.com/sramshetty/ShortGPT/tree/main My剪枝方案(暂定):         剪枝目标:1.5B —> 100~600M         剪枝方法:                 层粒度剪枝                 1、基于BI分数选择P%的冗余层,P=60~80                 2、对前N%冗余层,

如何校准实验中振镜频率的漂移

在实验过程中,使用共振扫描振镜(如Cambridge Technology的8kHz振镜)时,频率漂移是一个常见问题,尤其是在温度变化或长期运行的情况下。为了确保实验的准确性和稳定性,我们需要采取有效的校准措施。本文将介绍如何监测、调节和校准振镜频率,以减少漂移对实验结果的影响。 1. 温度管理和稳定性控制 振镜的频率变化与温度密切相关,温度的升高会导致机械结构的变化,进而影响振镜的共

jmeter压力测试,通过LLM利用RAG实现知识库问答,NEO4J部署,GraphRAG以知识图谱在查询时增强提示实现更准确的知识库问答(9/7)

前言         这周也是杂七杂八的一天(高情商:我是一块砖,哪里需要往哪里搬),首先是接触了jemter这个压力测试工具,然后帮公司的AIGC项目编写使用手册和问答手册的第一版,并通过这个平台的智能体实现知识库问答的功能展示,以及部分个人扩展和思考(NEO4J创建知识图谱的GraphRAG)。 Jmeter         Jmeter是一个压力测试工具,一开始导师叫我熟悉的时候我还说

下载量10w+!LLM经典《大型语言模型:语言理解和生成》pdf分享

介绍 近年来,人工智能在新语言能力方面取得了显著进展,深度学习技术的快速发展推动了语言AI系统在文本编写和理解方面的表现。这一趋势催生了许多新功能、产品和整个行业的兴起。 本书旨在为Python开发者提供实用工具和概念,帮助他们利用预训练的大型语言模型的能力,如拷贝写作、摘要等用例;构建高级的LLM流水线来聚类文本文档并探索主题;创建超越关键词搜索的语义搜索引擎;深入了解基础Transfo