2024 年中国高校大数据挑战赛赛题 C:用户对博物馆评论的情感分析完整思路以及源代码分享

本文主要是介绍2024 年中国高校大数据挑战赛赛题 C:用户对博物馆评论的情感分析完整思路以及源代码分享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

博物馆是公共文化服务体系的重要组成部分。国家文物局发布, 2021 年我国新增备案博物馆 395 家,备案博物馆总数达 6183 家,排 名全球前列;5605 家博物馆实现免费开放,占比达 90%以上;全国 博物馆举办展览 3.6 万个,教育活动 32.3 万场;虽受疫情影响,全国 博物馆仍接待观众 7.79 亿人次。 但在总体繁荣业态下,一些地方博物馆仍存在千馆一面、公共文 化服务供给同质化的尴尬局面,在发展定位、体系布局、功能发挥等 方面尚需完善提升。这给博物馆基于自身特色进一步迈向真正的公共 性提出了新课题,也即坚持守正创新,坚持直面公众和社会的公共文 化服务的创造性转化、创新性发展。 为了提升博物馆公共服务水平,课题组收集大众点评平台上用户 对南京市朝天宫、瞻园、甘熙宅第、江宁织造博物馆和六朝博物馆五 个博物馆的点评数据,数据字段主要包括:用户编号、评论内容、评 论时间等。 现需要根据用户对五个博物馆的评论内容,分析以下问题:

问题 1:针对每位用户的评论,建立情感判别模型,判断评论内 容的情感正反方向,输出评论内容的情感方向为正面、中立、负面, 并统计每个博物馆历史评论各个方向情感的比例分布情况。(完整代码与结果见文末附件!)

文本预处理是情感分析的关键步骤,直接关系到后续分析的准确性。因此,我们将采用以下多步骤策略进行深度预处理:

  1. 数据清洗:去除重复、缺失或格式错误的评论,确保每条数据的有效性。移除评论中的HTML标签、特殊字符等无关信息。
  2. 中文分词:使用jieba等中文分词工具,将连续的评论文本切分为有意义的词汇单元。根据博物馆领域的专业词汇库,优化分词结果,确保专业术语的准确性。
  3. 停用词处理:构建停用词列表,包括常见的无意义词汇、虚词等。去除评论中的停用词,减少噪声干扰,凸显关键信息。
  4. 词性标注与筛选:对分词后的结果进行词性标注,识别出名词、动词、形容词等关键词性。根据情感分析的需要,筛选保留对情感倾向判断有帮助的词性。
  5. 去除标点符号:移除评论中的标点符号,避免其对情感分析造成干扰。
  6. 文本标准化:处理缩写、俚语等,确保文本的一致性和可分析性。

利用业界领先的NLTK库中的VADER情感分析器,对每一条评论数据进行深度的情感挖掘。VADER情感分析器凭借其独特的算法和大量的训练数据,能够精准捕捉文本中微妙的情感变化。通过这一先进工具的运用,我们得以将每一条评论细分为正面、中立和负面三种情感倾向,确保情感分类的准确性和可靠性。

结果

问题 2:综合考虑评论内容中情感词、程度副词、否定词、标点 符合等等影响情感方向的指标,建立情感得分评价模型,得到每位用 户评论的情感得分,并基于得分对五个博物馆进行客观排名。(完整代码与结果见文末附件!)

1. 情感得分评价模型建立:

文本预处理: 对评论内容进行分词、去除停用词、标点符号等预处理操作。

情感词、程度副词、否定词处理: 使用情感词典、程度副词、否定词等词汇进行情感分析,给出每个词的情感权重。

情感得分计算: 根据情感词、程度副词、否定词等的权重,计算每个评论的情感得分。可以使用加权平均等方式计算得分。

2. 客观排名:

情感得分汇总: 统计每个博物馆的所有评论的情感得分,并计算平均得分。

博物馆客观排名: 根据博物馆的平均情感得分,对博物馆进行客观排名,得分高者排名靠前。

平均情感得分计算: 对于每个博物馆,计算其所有评论的平均情感得分。这可以用以下公式表示:

问题 3:针对每位用户评论的内容,可通过事件抽取或实体抽取 算法,从评论内容中抽取影响用户情感的关键事件或因素,如某用户 评论“非常不错!环境高大上!好多是最近房地产开发盖新房子时新 挖出来的,不错“,可得知该评论为正面情感,影响其正面评价的是” 房地产开发盖新房子时新挖的“、”环境高大上“两个因素。基于上 述抽取的关键事件或影响因素,综合分析得到影响用户对五个博物馆 情感的影响因素。(完整代码与结果见文末附件!)

事件抽取或实体抽取: 使用自然语言处理技术,如命名实体识别(NER)或事件抽取,从评论内容中提取出与博物馆相关的实体或事件。这些实体或事件可能涉及到展览、服务、环境等方面。

情感分析与关键事件关联: 将抽取出的实体或事件与情感分析结果关联起来,分析这些实体或事件对用户情感的影响。可以考虑使用规则匹配、关键词匹配等方法,将评论中提到的实体或事件与情感得分联系起来。

统计分析与主要因素确定: 综合分析抽取的关键事件或因素,统计不同因素出现的频率以及与情感倾向的关联程度。根据分析结果确定影响用户对五个博物馆情感的主要因素。

问题 4:基于上述分析得到的数据结果,为五个博物馆撰写一段 提升公共服务水平的可行性建议,建议要有理有据,且具有一定的可 操作性

完整附件内容:

这篇关于2024 年中国高校大数据挑战赛赛题 C:用户对博物馆评论的情感分析完整思路以及源代码分享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793599

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

跨国公司撤出在华研发中心的启示:中国IT产业的挑战与机遇

近日,IBM中国宣布撤出在华的两大研发中心,这一决定在IT行业引发了广泛的讨论和关注。跨国公司在华研发中心的撤出,不仅对众多IT从业者的职业发展带来了直接的冲击,也引发了人们对全球化背景下中国IT产业竞争力和未来发展方向的深思。面对这一突如其来的变化,我们应如何看待跨国公司的决策?中国IT人才又该如何应对?中国IT产业将何去何从?本文将围绕这些问题展开探讨。 跨国公司撤出的背景与

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技