RLAIF(0)—— DPO(Direct Preference Optimization) 原理与代码解读

2024-03-10 04:20

本文主要是介绍RLAIF(0)—— DPO(Direct Preference Optimization) 原理与代码解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前的系列文章:介绍了 RLHF 里用到 Reward Model、PPO 算法。
但是这种传统的 RLHF 算法存在以下问题:流程复杂,需要多个中间模型对超参数很敏感,导致模型训练的结果不稳定。
斯坦福大学提出了 DPO 算法,尝试解决上面的问题,DPO 算法的思想也被后面 RLAIF(AI反馈强化学习)的算法借鉴,这个系列会从 DPO 开始,介绍 SPIN、self-reward model 算法。
而 DPO 本身是一种不需要强化学习的算法,简化了整个 RLHF 流程,训练起来会更简单。

原理


传统的 RLHF 步骤一般是:训练一个 reward model 对 prompt 的 response 进行打分,训练完之后借助 PPO 算法,使得 SFT 的模型和人类偏好对齐,这个过程我们需要初始化四个基本结构一致的 transformer 模型。DPO 算法,提供了一种更为简单的 loss function,而这个就是 DPO 的核心思想:针对奖励函数的 loss 函数被转换成针对策略的 loss 函数,而针对策略的 loss 函数又暗含对奖励的表示,即人类偏好的回答会暗含一个更高的奖励。

L D P O ( π θ ; π r e f ) = − E ( x , y w , y l ) ∼ D [ log ⁡ σ ( β log ⁡ π θ ( y w ∣ x ) π r e f ( y w ∣ x ) − β log ⁡ π θ ( y l ∣ x ) π r e f ( y l ∣ x ) ) ] \mathcal{L}_{\mathrm{DPO}}\left(\pi_\theta ; \pi_{\mathrm{ref}}\right)=-\mathbb{E}_{\left(x, y_w, y_l\right) \sim \mathcal{D}}\left[\log \sigma\left(\beta \log \frac{\pi_\theta\left(y_w \mid x\right)}{\pi_{\mathrm{ref}}\left(y_w \mid x\right)}-\beta \log \frac{\pi_\theta\left(y_l \mid x\right)}{\pi_{\mathrm{ref}}\left(y_l \mid x\right)}\right)\right] LDPO(πθ;πref)=E(x,yw,yl)D[logσ(βlogπref(ywx)πθ(ywx)βlogπref(ylx)πθ(ylx))]

这个函数唯一的超参数是 β \beta β,决定了不同策略获得的奖励之间的 margin。
可以看出 DPO 虽然说是没有用强化学习,但是还是有强化学习的影子,相当于 beta 是一个固定的 reward,通过人类偏好数据,可以让这个奖励的期望最大化,本至上来说 dpo 算法也算是一种策略迭代。
对 loss function 求导,可得如下表达式:

∇ θ L D P O ( π θ ; π r e f ) = − β E ( x , y w , y l ) ∼ D [ σ ( r ^ θ ( x , y l ) − r ^ θ ( x , y w ) ) ⏟ higher weight when reward estimate is wrong  [ ∇ θ log ⁡ π ( y w ∣ x ) ⏟ increase likelihood of  y w − ∇ θ log ⁡ π ( y l ∣ x ) ⏟ decrease likelihood of  y l ] ] \begin{aligned} & \nabla_\theta \mathcal{L}_{\mathrm{DPO}}\left(\pi_\theta ; \pi_{\mathrm{ref}}\right)= \\ & -\beta \mathbb{E}_{\left(x, y_w, y_l\right) \sim \mathcal{D}}[\underbrace{\sigma\left(\hat{r}_\theta\left(x, y_l\right)-\hat{r}_\theta\left(x, y_w\right)\right)}_{\text {higher weight when reward estimate is wrong }}[\underbrace{\nabla_\theta \log \pi\left(y_w \mid x\right)}_{\text {increase likelihood of } y_w}-\underbrace{\nabla_\theta \log \pi\left(y_l \mid x\right)}_{\text {decrease likelihood of } y_l}]] \end{aligned} θLDPO(πθ;πref)=βE(x,yw,yl)D[higher weight when reward estimate is wrong  σ(r^θ(x,yl)r^θ(x,yw))[increase likelihood of yw θlogπ(ywx)decrease likelihood of yl θlogπ(ylx)]]

其中 r ^ θ ( x , y ) = β log ⁡ π θ ( y ∣ x ) π ref  ( y ∣ x ) \hat{r}_\theta(x, y)=\beta \log \frac{\pi_\theta(y \mid x)}{\pi_{\text {ref }}(y \mid x)} r^θ(x,y)=βlogπref (yx)πθ(yx)
不得不佩服作者构思的巧妙,通过求导,作者捕捉到了”暗含“的 reward —— σ ( r ^ θ ( x , y l ) − r ^ θ ( x , y w ) ) \sigma\left(\hat{r}_\theta\left(x, y_l\right)-\hat{r}_\theta\left(x, y_w\right)\right) σ(r^θ(x,yl)r^θ(x,yw)),作者在论文里说到,当我们在让 loss 降低的过程中,这个 reward 也会变小(可以用来做 rejected_rewards)。因而在下面的代码实现里,chosen_rewards 和 rejected_rewards 就来自这个想法。

代码实现

我们来看下 trl 是如何实现 dpo loss 的,可以看到 dpo 和 ppo 相比,实现确实更为简单,而且从开源社区的反应来看,dpo 的效果也很不错,现在 dpo 已经成为偏好对齐最主流的算法之一。

def dpo_loss(self,policy_chosen_logps: torch.FloatTensor,policy_rejected_logps: torch.FloatTensor,reference_chosen_logps: torch.FloatTensor,reference_rejected_logps: torch.FloatTensor,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:"""Compute the DPO loss for a batch of policy and reference model log probabilities.Args:policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,)reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,)Returns:A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).The losses tensor contains the DPO loss for each example in the batch.The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively."""pi_logratios = policy_chosen_logps - policy_rejected_logpsif self.reference_free:ref_logratios = torch.tensor([0], dtype=pi_logratios.dtype, device=pi_logratios.device)else:ref_logratios = reference_chosen_logps - reference_rejected_logpspi_logratios = pi_logratios.to(self.accelerator.device)ref_logratios = ref_logratios.to(self.accelerator.device)logits = pi_logratios - ref_logratios# The beta is a temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5.# We ignore the reference model as beta -> 0. The label_smoothing parameter encodes our uncertainty about the labels and# calculates a conservative DPO loss.losses = (-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)- F.logsigmoid(-self.beta * logits) * self.label_smoothing)chosen_rewards = (self.beta* (policy_chosen_logps.to(self.accelerator.device) - reference_chosen_logps.to(self.accelerator.device)).detach())rejected_rewards = (self.beta* (policy_rejected_logps.to(self.accelerator.device)- reference_rejected_logps.to(self.accelerator.device)).detach())return losses, chosen_rewards, rejected_rewards

改进

在 Preference Tuning LLMs with Direct Preference Optimization Methods (huggingface.co) 一文中提到,dpo 也存在一些不足:
dpo 算法很容易在数据集上过拟合dpo 训练依赖成对的偏好数据集,这种数据集的构造和标注都很耗费时间。
一些研究者也根据这些问题提出了新的算法:
针对 1,deepmind 提出了 Identity Preference Optimisation (IPO),给 DPO 的 loss 加了一个正则项,避免训练快速过拟合
针对 2,ContextualAI 提出了 Kahneman-Tversky Optimisation (KTO),KTO 算法的数据集,不再是成对的偏好数据集,而是给每条数据集 “good” 或者 “bad” 的标签进行偏好对齐。
这些算法的相关内容会在介绍完 SPIN 和 self-reward model 之后进行补充,欢迎关注,感谢阅读。
最后说点题外话,通过 DPO,我们可以看出深度学习还是一门实验的学科,如果光看 DPO 算法本身,很难相信这样一个简单的算法,会这么有效。所以多动手写代码,多实验,也许有一天我们也可以发现很 work 的算法,共勉。

参考

  1. Direct Preference Optimization: Your Language Model is Secretly a Reward Model
  2. Aligning LLMs with Direct Preference Optimization (youtube.com)
  3. huggingface/trl: Train transformer language models with reinforcement learning. (github.com)
  4. Preference Tuning LLMs with Direct Preference Optimization Methods (huggingface.co)

这篇关于RLAIF(0)—— DPO(Direct Preference Optimization) 原理与代码解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793017

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P