【数据分享】2000-2022年全国1km分辨率的逐日PM10栅格数据

2024-03-10 00:52

本文主要是介绍【数据分享】2000-2022年全国1km分辨率的逐日PM10栅格数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000-2022年全国范围逐日的PM2.5栅格数据和2013-2022年全国范围逐日SO2栅格数据(可查看之前的文章获悉详情)。

本次我们给大家带来的是2000-2022年全国范围的逐日的PM10栅格数据,原始数据格式为NetCDF (.nc),空间分辨率为1km,单位为µg/m3,坐标系为WGS_1984。为了方便大家使用,我们将数据格式转为栅格格式(.tif)。

数据来源于韦晶博士、李占清教授团队发布在国家青藏高原科学数据中心网站上的中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP),PM10数据是该数据集的主要指标之一。该数据是利用人工智能技术,使用模式资料填补了卫星MODIS MAIAC AOD产品的空间缺失值,结合地基观测、大气再分析和排放清单等大数据生产得到的2000年至2022年全国无缝隙地面PM10数据。另外,该数据持续更新,如有需要大家可持续关注!

大家可以自己去国家青藏高原科学数据中心下载nc格式的原始数据,也可以在本公众号回复关键词 160 按照转发要求获取nc格式,以及我们转换出的tif格式两种格式的数据!以下为数据的详细介绍:

01 数据预览

该数据包括nc和tif两种格式!两种数据格式的命名规则不同:

(1)nc.格式:CHAP_PM10_ab_yyyymmdd_V4.nc

  • CHAP:表示数据集名称
  • PM10:表示空气污染物的指标名称
  • ab:表示时间和空间分辨率,其中a表示时间分辨率(D表示为逐日数据),b表示空间分辨率(1K表示1km)
  • yyyymmdd:表示数据时间,其中yyyy代表年,mm表示月,dd表示日
  • V4:表示数据版本
  • .nc:表示数据格式

例如:CHAP_PM10_D1K_20221201_V4.nc,表示为2022年12月1日的1km分辨率的逐日的PM10数据。

(2).tif格式:按照年月日的日期格式(yyyymmdd.tif)命名栅格文件

例如:20210101.tif,表示为2021年1月1日的PM10栅格数据。

我们以2022年12月1日全国范围的PM10数据为例来预览一下:

2022年12月1日全国PM10

02 数据详情

时间范围

2000-2022年(逐日)

空间范围:

全国

数据格式:

NetCDF [.nc] 和.tif

空间分辨率:

1km

数据单位:

ug/m3

数据坐标:

WGS_1984

原始数据的下载网站:

数据来源于美国马里兰大学韦晶博士、李占清教授团队在国家青藏高原科学数据中心平台上分享的数据,网址为:https://data.tpdc.ac.cn/zh-hans/data/30b46d2f-78ee-4f3e-88ad-690383d47df5

数据引用:

韦晶, 李占清. (2023). 中国高分辨率高质量PM10数据集(2000-2022). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.3752465.

Wei, J., Li, Z. (2023). ChinaHighPM10: High-resolution and High-quality Ground-level PM10 Dataset for China (2000-2022). National Tibetan Plateau / Third Pole Environment Data Center.

https://doi.org/10.5281/zenodo.3752465.

相关论文引用:

Wei, J., Li, Z., Xue, W., Sun, L., Fan, T., Liu, L., Su, T., & Cribb, M. (2021). The ChinaHighPM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China. Environment International, 146, 106290.

https://doi.org/10.1016/j.envint.2020.106290

如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!

03 数据获取

这篇关于【数据分享】2000-2022年全国1km分辨率的逐日PM10栅格数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792492

相关文章

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入