多边形质心(centroid)的计算方法

2024-03-09 21:12

本文主要是介绍多边形质心(centroid)的计算方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
原文代码

// polygon按顺时针排列顶点
function getCentroid(polygon) {var totalArea = 0var totalX = 0var totalY = 0var points = polygon[0]for (var i = 0; i < points.length; ++i) {// a、b以及原点构成一个三角形var a = points[i + 1]var b = points[i]var area = 0.5 * (a[0] * b[1] - b[0] * a[1])  // 计算面积var x = (a[0] + b[0]) / 3  // 计算x方向质心var y = (a[1] + b[1]) / 3  // 计算y方向质心totalArea += areatotalX += area * xtotalY += area * y}return [totalX / totalArea, totalY/ totalArea]
}

See https://jingsam.github.io/2016/10/05/centroid.html

这篇关于多边形质心(centroid)的计算方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791959

相关文章

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

IBS和IBD的区别和计算方法介绍

大家好,我是邓飞。 今天介绍一下IBS和IBD的区别: IBS(肠易激综合症)和IBD(炎症性肠病)是两种不同的消化系统疾病,主要区别如下: IBS(Irritable Bowel Syndrome):是一种功能性肠道疾病,主要表现为腹痛、腹胀、腹泻或便秘,症状通常与饮食、压力和心理因素相关,没有明显的器质性病变。 IBD(Inflammatory Bowel Disease):是一组

组合c(m,n)的计算方法

问题:求解组合数C(n,m),即从n个相同物品中取出m个的方案数,由于结果可能非常大,对结果模10007即可。       共四种方案。ps:注意使用限制。 方案1: 暴力求解,C(n,m)=n*(n-1)*...*(n-m+1)/m!,n<=15 ; int Combination(int n, int m) { const int M = 10007; int

【Godot4.3】多边形的斜线填充效果基础实现

概述 图案(Pattern)填充是一个非常常见的效果。其中又以斜线填充最为简单。本篇就探讨在Godot4.3中如何使用Geometry2D和CanvasItem的绘图函数实现斜线填充效果。 基础思路 Geometry2D类提供了多边形和多边形以及多边形与折线的布尔运算。按照自然的思路,多边形的斜线填充应该属于“多边形与折线的布尔运算”范畴。 第一个问题是如何获得斜线,这条斜线应该满足什么样

模拟退火判断一个圆是否可以放在一个多边形内

/*给定n个点的一个多边形,一个圆的半径,判断圆是否可以放在多边形里*//* ***********************************************Author :rabbitCreated Time :2014/7/3 22:46:38File Name :2.cpp**********************************************

利用向量积(叉积)计算三角形的面积和多边形的面积(hdu2036)

开始撸计算几何题目了。。。。。。。 预备知识:叉乘求多边形面积 参考证明资料: 公式证明: http://www.cnblogs.com/xiexinxinlove/p/3708147.html 高中知识: http://wenku.baidu.com/view/867e6edfad51f01dc281f11a.html #include<stdio.h>#inclu

HDU 2036 求多边形面积

题目: http://acm.hdu.edu.cn/showproblem.php?pid=2036 对用(按逆时针排列)描述的多边形,其面积为: 若按顺时针排列,取负数即可。 资料链接: http://zh.wikipedia.org/wiki/%E5%A4%9A%E8%BE%B9%E5%BD%A2 不知道这公式是咋推导的,网上找不到,先留着。 #

图形几何-如何将凹多边形分解成若干个凸多边形

凹多边形的概念         凹多边形是指至少有一个内角大于180度的多边形。与之相对,凸多边形的所有内角均小于或等于180度,且任意两点之间的连线都完全位于多边形内部。将凹多边形分解成若干个凸多边形是计算几何中的一个重要问题。 分解原理         将凹多边形分解为凸多边形的基本原理是通过绘制对角线来消除凹角。对角线是连接多边形两个非相邻顶点的线段。通过适当选择对角线,可以将凹多边形

电负性的计算方法

保罗电负性标度是广泛使用的方法之一,由Linus Pauling于1932年提出。这个标度基于实验数据,特别是化学键的键能数据。虽然电负性本身不是直接计算得到的,但保罗通过实验数据提出了一个经验公式: [\Delta E = \frac{1}{2} (E_{AB} - (E_{AA} + E_{BB}))] 其中: ( \Delta E ) 是化学键的键能差, ( E_{AB} ) 是AB

判断点在多边形内的算法(Winding Number详解)

在计算几何中,判定点是否在多边形内,是个非常有趣的问题。通常有两种方法: 1.Crossing Number(交叉数) 它计算从点P开始的射线穿过多边形边界的次数。当“交叉数”是偶数时,点在外面;当它是奇数时,点在里面。这种方法有时被称为“奇-偶”检验。 2.Winding Number(环绕数) 它计算多边形绕着点P旋转的次数。只有当“圈数”wn = 0时,点才在外面; 否则,点在