【Godot4.3】多边形的斜线填充效果基础实现

2024-09-08 08:28

本文主要是介绍【Godot4.3】多边形的斜线填充效果基础实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

图案(Pattern)填充是一个非常常见的效果。其中又以斜线填充最为简单。本篇就探讨在Godot4.3中如何使用Geometry2DCanvasItem的绘图函数实现斜线填充效果。

基础思路

Geometry2D类提供了多边形和多边形以及多边形与折线的布尔运算。按照自然的思路,多边形的斜线填充应该属于“多边形与折线的布尔运算”范畴。

第一个问题是如何获得斜线,这条斜线应该满足什么样的条件,除了方向,长度应该怎么确定,又应该从什么地方开始排布,需要阵列多少根?如何才能既满足多边形的填充,又不至于在长度和数量上产生浪费。

围绕这个问题,我思考的答案是——求多边形的矩形包围盒(Rect2):

  • 斜线的方向可以用与X轴正方向的夹角定义(与Vector2angle()的定义一致)
  • 初始斜线的一个端点要与Rect2的某个顶点重合(具体与斜线的方向有关),然后与Rect2的宽边或者高边围成一个直角三角形,斜线的长度就等于直角三角形斜边的长度。
  • 通过计算我们可以获得第一条斜线
  • 然后按照间隔进行偏移,就可以得到所有斜线
  • 偏移的总距离 = Rect2的宽度或者高度,与第三边的和
  • 需要偏移的次数 = 偏移的总距离/斜线间隔

下图是上述思路的图解:

多边形求填充斜线的思路

最后就是遍历所有斜线,用Geometry2D求多边形与斜线的交集,最终绘制时只绘制这部分就可以了。

斜线的求取和偏移方向与方向有关

测试

基于上面的思路,我创建了一个基础的测试场景。

根节点代码如下:

# 多边形的斜线填充测试
# 作者:巽星石
# 20249722:29:12
@tool
extends Node2Dvar shape:PackedVector2Array = [Vector2(0,0),Vector2(50,30),Vector2(100,20),Vector2(90,80),Vector2(60,100),Vector2(0,0),
]## 形状的轮廓颜色
@export var border_color:=Color.RED:set(val):border_color = valqueue_redraw()## 形状的填充颜色
@export var fill_color:=Color.WHITE:set(val):fill_color = valqueue_redraw()## 斜线的颜色
@export var lines_color:=Color.RED:set(val):lines_color = valqueue_redraw()## 斜线的宽度
@export var lines_width:=1.0:set(val):lines_width = valqueue_redraw()## 斜线与X轴正方向的夹角
@export_range(-360.0,360.0,1.0) var line_angle:=45.0:set(val):line_angle = valqueue_redraw()## 斜线之间的间距
@export var spacing:float = 10.0:set(val):spacing = valqueue_redraw()func _draw() -> void:# 绘制矩形var rect = get_rect(shape)var rect_w = rect.size.xvar rect_h = rect.size.ydraw_rect(rect,Color.AQUA,false,1)# 根据斜线与X轴夹角计算出其第一条线var dir = Vector2.RIGHT.rotated(deg_to_rad(line_angle)) # 斜线方向var length = rect_h / cos(deg_to_rad(90 - line_angle)) # 斜线长度var p1 = rect.position + Vector2(rect_w,0)  # 右上角点var p2 = p1 + dir * length# 计算填充长度var draw_lenth = rect_w + length * sin(deg_to_rad(90 - line_angle))draw_line(p1,p1 - Vector2(draw_lenth,0),Color.CHARTREUSE,1)# 计算需要阵列的斜线数目var old_lines:PackedVector2Array = [] # 存储所有原始斜线的数组var lines:PackedVector2Array = [] # 存储所有斜线的数组var steps = draw_lenth / spacingfor i in range(steps+1):var line:PackedVector2Array = [p1,p2]line = Transform2D(0,Vector2(-spacing * i,0)) * lineold_lines.append(line[0])old_lines.append(line[1])var jiao = Geometry2D.intersect_polyline_with_polygon(line,shape) # 求交集部分if jiao.size() > 0:lines.append(jiao[0][0])lines.append(jiao[0][1])# 绘制多边形填充draw_polygon(shape,[fill_color])# 绘制斜线填充draw_multiline(old_lines,Color.AQUA,lines_width)# 绘制斜线填充draw_multiline(lines,lines_color,lines_width)# 绘制多边形轮廓draw_polyline(shape,border_color,1)# 获取图形的矩形
func get_rect(shape:PackedVector2Array) -> Rect2:# 拆分出X坐标和Y坐标数组var x_arr = []var y_arr = []for p in shape:x_arr.append(p.x)y_arr.append(p.y)# 最小值构成Rect2的offsetvar pos = Vector2(x_arr.min(),y_arr.min())# 最大值 - pos = Rect2 的 sizevar siz = Vector2(x_arr.max(),y_arr.max()) - posreturn Rect2(pos,siz)

测试效果:

基础斜线填充测试效果

其中:

  • 绿色线为斜线需要偏移的总距离
  • 红色为第一条斜线
  • 海蓝色线为通过偏移获得的斜线。
  • 原始多边形填充默认为白色,轮廓和斜线都为黑色。

下图是基于line_angle属性值从45°逐渐递增的动态演示:

线太宽时的错误

线宽在一两像素时,而且多边形绘制了轮廓线的效果下,上面的斜线填充看起来十分完美。但是当线宽大于一定数值时,用Polyline形式就出现明显的毛病了,因为所有斜线都被绘制为类似矩形的形状。实际上如果去除多边形的轮廓线,即使是1像素宽的线,也是矩形,求得的斜线也是不完美的。

斜线被绘制为矩形1像素宽也是矩形

所以解决方案就是,将斜线看做是多边形。

而这就需要将折线转变为多边形,好在Geometry2D提供了一个叫offset_polyline()的方法,可以将Polyline通过像素偏移的方式,转化为相应宽度的多边形。

所以问题又变成了求解多边形与多边形交集的问题。

改进后的代码如下:

# 多边形的斜线填充测试(偏移矩形法)
# 作者:巽星石
# 20249800:51:37
# 20249801:14:22
@tool
extends Node2Dvar shape:PackedVector2Array = [Vector2(0,0),Vector2(50,30),Vector2(100,20),Vector2(90,80),Vector2(60,100),Vector2(0,0),
]## 形状的轮廓颜色
@export var border_color:=Color.BLACK:set(val):border_color = valqueue_redraw()## 形状的填充颜色
@export var fill_color:=Color.WHITE:set(val):fill_color = valqueue_redraw()## 斜线的颜色
@export var lines_color:=Color.BLACK:set(val):lines_color = valqueue_redraw()## 斜线的宽度
@export var lines_width:=1.0:set(val):lines_width = valqueue_redraw()## 斜线与X轴正方向的夹角
@export_range(-360.0,360.0,1.0) var line_angle:=45.0:set(val):line_angle = valqueue_redraw()## 斜线之间的间距
@export var spacing:float = 10.0:set(val):spacing = valqueue_redraw()func _draw() -> void:# 绘制矩形var rect = get_rect(shape)var rect_w = rect.size.xvar rect_h = rect.size.y#draw_rect(rect,Color.AQUA,false,1)# 根据斜线与X轴夹角计算出其第一条线var dir = Vector2.RIGHT.rotated(deg_to_rad(line_angle)) # 斜线方向var length = rect_h / cos(deg_to_rad(90 - line_angle)) # 斜线长度var p1 = rect.position + Vector2(rect_w,0)  # 右上角点var p2 = p1 + dir * length# 计算填充长度var draw_lenth = rect_w + length * sin(deg_to_rad(90 - line_angle))#draw_line(p1,p1 - Vector2(draw_lenth,0),Color.CHARTREUSE,1)# 计算需要阵列的斜线数目var old_lines:PackedVector2Array = []             # 存储所有原始斜线的数组var lines:PackedVector2Array = []                 # 存储所有交集斜线的数组var old_line_rects:Array[PackedVector2Array] = [] # 存储原始斜线的的偏移矩形var line_polygons:Array[PackedVector2Array] = []     # 存储交集斜线的的偏移矩形var steps = draw_lenth / spacingfor i in range(steps+1):var line:PackedVector2Array = [p1,p2]line = Transform2D(0,Vector2(-spacing * i,0)) * lineold_lines.append(line[0])old_lines.append(line[1])# 根据斜线求偏移矩形var line_rect = Geometry2D.offset_polyline(line,lines_width/2.0)old_line_rects.append_array(line_rect)#draw_colored_polygon(line_rect[0],lines_color)# 求折线形式的交集var jiao = Geometry2D.intersect_polyline_with_polygon(line,shape) # 求交集部分if jiao.size() > 0:lines.append(jiao[0][0])lines.append(jiao[0][1])# 求偏移矩形的交集var jiao_polygon = Geometry2D.intersect_polygons(line_rect[0],shape) # 求交集部分if jiao_polygon.size() > 0:line_polygons.append(jiao_polygon[0])# 绘制多边形填充draw_polygon(shape,[fill_color])# 绘制斜线多边形for polygon in line_polygons:draw_colored_polygon(polygon,lines_color)# 绘制原始斜线#draw_multiline(old_lines,Color.AQUA,lines_width)# 绘制第一条原始斜线#draw_line(p1,p2,Color.RED,1)# 绘制斜线填充#draw_multiline(lines,lines_color,lines_width)# 绘制多边形轮廓draw_polyline(shape,border_color,1)# 获取图形的矩形
func get_rect(shape:PackedVector2Array) -> Rect2:# 拆分出X坐标和Y坐标数组var x_arr = []var y_arr = []for p in shape:x_arr.append(p.x)y_arr.append(p.y)# 最小值构成Rect2的offsetvar pos = Vector2(x_arr.min(),y_arr.min())# 最大值 - pos = Rect2 的 sizevar siz = Vector2(x_arr.max(),y_arr.max()) - posreturn Rect2(pos,siz)

部分测试截图如下:

不绘制多边形填充和轮廓的效果

绘制了多边形填充和轮廓的效果

总结

本篇简要描述了多边形斜线填充算法的简单思路,当然这里只是初步的测试,只适用于凸多边形在0到90度之间的情况。

上面例子中的凹多边形在一定0到90度之间的某些清下也会出现错误,如下图:

凹多边形在一定角度下的求解错误

这种错误其实也可以通过将凹多边形拆解为若干凸多边形求解。

0到90度之外的求解本篇并没有补足,但是大致思路是一致的。

展望

斜线填充只是最简单的一种图案(Pattern)填充形式。但在拿下斜线填充之后,剩下的无论是波浪线、棋盘格等等都有了基础的求解思路。

矢量蒙版和图片填充

蒙版是一个像素图概念,基于Godot的BitMap类型,可以创建和还原硬边缘的蒙版效果。

而通过矢量多边形栅格化,我们可以创建BitMap,从而实现矢量蒙版,而有了矢量蒙版,就可以实现多边形的图案填充。

多边形图片填充的基本思路

这篇关于【Godot4.3】多边形的斜线填充效果基础实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147613

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT