【Godot4.3】多边形的斜线填充效果基础实现

2024-09-08 08:28

本文主要是介绍【Godot4.3】多边形的斜线填充效果基础实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

图案(Pattern)填充是一个非常常见的效果。其中又以斜线填充最为简单。本篇就探讨在Godot4.3中如何使用Geometry2DCanvasItem的绘图函数实现斜线填充效果。

基础思路

Geometry2D类提供了多边形和多边形以及多边形与折线的布尔运算。按照自然的思路,多边形的斜线填充应该属于“多边形与折线的布尔运算”范畴。

第一个问题是如何获得斜线,这条斜线应该满足什么样的条件,除了方向,长度应该怎么确定,又应该从什么地方开始排布,需要阵列多少根?如何才能既满足多边形的填充,又不至于在长度和数量上产生浪费。

围绕这个问题,我思考的答案是——求多边形的矩形包围盒(Rect2):

  • 斜线的方向可以用与X轴正方向的夹角定义(与Vector2angle()的定义一致)
  • 初始斜线的一个端点要与Rect2的某个顶点重合(具体与斜线的方向有关),然后与Rect2的宽边或者高边围成一个直角三角形,斜线的长度就等于直角三角形斜边的长度。
  • 通过计算我们可以获得第一条斜线
  • 然后按照间隔进行偏移,就可以得到所有斜线
  • 偏移的总距离 = Rect2的宽度或者高度,与第三边的和
  • 需要偏移的次数 = 偏移的总距离/斜线间隔

下图是上述思路的图解:

多边形求填充斜线的思路

最后就是遍历所有斜线,用Geometry2D求多边形与斜线的交集,最终绘制时只绘制这部分就可以了。

斜线的求取和偏移方向与方向有关

测试

基于上面的思路,我创建了一个基础的测试场景。

根节点代码如下:

# 多边形的斜线填充测试
# 作者:巽星石
# 20249722:29:12
@tool
extends Node2Dvar shape:PackedVector2Array = [Vector2(0,0),Vector2(50,30),Vector2(100,20),Vector2(90,80),Vector2(60,100),Vector2(0,0),
]## 形状的轮廓颜色
@export var border_color:=Color.RED:set(val):border_color = valqueue_redraw()## 形状的填充颜色
@export var fill_color:=Color.WHITE:set(val):fill_color = valqueue_redraw()## 斜线的颜色
@export var lines_color:=Color.RED:set(val):lines_color = valqueue_redraw()## 斜线的宽度
@export var lines_width:=1.0:set(val):lines_width = valqueue_redraw()## 斜线与X轴正方向的夹角
@export_range(-360.0,360.0,1.0) var line_angle:=45.0:set(val):line_angle = valqueue_redraw()## 斜线之间的间距
@export var spacing:float = 10.0:set(val):spacing = valqueue_redraw()func _draw() -> void:# 绘制矩形var rect = get_rect(shape)var rect_w = rect.size.xvar rect_h = rect.size.ydraw_rect(rect,Color.AQUA,false,1)# 根据斜线与X轴夹角计算出其第一条线var dir = Vector2.RIGHT.rotated(deg_to_rad(line_angle)) # 斜线方向var length = rect_h / cos(deg_to_rad(90 - line_angle)) # 斜线长度var p1 = rect.position + Vector2(rect_w,0)  # 右上角点var p2 = p1 + dir * length# 计算填充长度var draw_lenth = rect_w + length * sin(deg_to_rad(90 - line_angle))draw_line(p1,p1 - Vector2(draw_lenth,0),Color.CHARTREUSE,1)# 计算需要阵列的斜线数目var old_lines:PackedVector2Array = [] # 存储所有原始斜线的数组var lines:PackedVector2Array = [] # 存储所有斜线的数组var steps = draw_lenth / spacingfor i in range(steps+1):var line:PackedVector2Array = [p1,p2]line = Transform2D(0,Vector2(-spacing * i,0)) * lineold_lines.append(line[0])old_lines.append(line[1])var jiao = Geometry2D.intersect_polyline_with_polygon(line,shape) # 求交集部分if jiao.size() > 0:lines.append(jiao[0][0])lines.append(jiao[0][1])# 绘制多边形填充draw_polygon(shape,[fill_color])# 绘制斜线填充draw_multiline(old_lines,Color.AQUA,lines_width)# 绘制斜线填充draw_multiline(lines,lines_color,lines_width)# 绘制多边形轮廓draw_polyline(shape,border_color,1)# 获取图形的矩形
func get_rect(shape:PackedVector2Array) -> Rect2:# 拆分出X坐标和Y坐标数组var x_arr = []var y_arr = []for p in shape:x_arr.append(p.x)y_arr.append(p.y)# 最小值构成Rect2的offsetvar pos = Vector2(x_arr.min(),y_arr.min())# 最大值 - pos = Rect2 的 sizevar siz = Vector2(x_arr.max(),y_arr.max()) - posreturn Rect2(pos,siz)

测试效果:

基础斜线填充测试效果

其中:

  • 绿色线为斜线需要偏移的总距离
  • 红色为第一条斜线
  • 海蓝色线为通过偏移获得的斜线。
  • 原始多边形填充默认为白色,轮廓和斜线都为黑色。

下图是基于line_angle属性值从45°逐渐递增的动态演示:

线太宽时的错误

线宽在一两像素时,而且多边形绘制了轮廓线的效果下,上面的斜线填充看起来十分完美。但是当线宽大于一定数值时,用Polyline形式就出现明显的毛病了,因为所有斜线都被绘制为类似矩形的形状。实际上如果去除多边形的轮廓线,即使是1像素宽的线,也是矩形,求得的斜线也是不完美的。

斜线被绘制为矩形1像素宽也是矩形

所以解决方案就是,将斜线看做是多边形。

而这就需要将折线转变为多边形,好在Geometry2D提供了一个叫offset_polyline()的方法,可以将Polyline通过像素偏移的方式,转化为相应宽度的多边形。

所以问题又变成了求解多边形与多边形交集的问题。

改进后的代码如下:

# 多边形的斜线填充测试(偏移矩形法)
# 作者:巽星石
# 20249800:51:37
# 20249801:14:22
@tool
extends Node2Dvar shape:PackedVector2Array = [Vector2(0,0),Vector2(50,30),Vector2(100,20),Vector2(90,80),Vector2(60,100),Vector2(0,0),
]## 形状的轮廓颜色
@export var border_color:=Color.BLACK:set(val):border_color = valqueue_redraw()## 形状的填充颜色
@export var fill_color:=Color.WHITE:set(val):fill_color = valqueue_redraw()## 斜线的颜色
@export var lines_color:=Color.BLACK:set(val):lines_color = valqueue_redraw()## 斜线的宽度
@export var lines_width:=1.0:set(val):lines_width = valqueue_redraw()## 斜线与X轴正方向的夹角
@export_range(-360.0,360.0,1.0) var line_angle:=45.0:set(val):line_angle = valqueue_redraw()## 斜线之间的间距
@export var spacing:float = 10.0:set(val):spacing = valqueue_redraw()func _draw() -> void:# 绘制矩形var rect = get_rect(shape)var rect_w = rect.size.xvar rect_h = rect.size.y#draw_rect(rect,Color.AQUA,false,1)# 根据斜线与X轴夹角计算出其第一条线var dir = Vector2.RIGHT.rotated(deg_to_rad(line_angle)) # 斜线方向var length = rect_h / cos(deg_to_rad(90 - line_angle)) # 斜线长度var p1 = rect.position + Vector2(rect_w,0)  # 右上角点var p2 = p1 + dir * length# 计算填充长度var draw_lenth = rect_w + length * sin(deg_to_rad(90 - line_angle))#draw_line(p1,p1 - Vector2(draw_lenth,0),Color.CHARTREUSE,1)# 计算需要阵列的斜线数目var old_lines:PackedVector2Array = []             # 存储所有原始斜线的数组var lines:PackedVector2Array = []                 # 存储所有交集斜线的数组var old_line_rects:Array[PackedVector2Array] = [] # 存储原始斜线的的偏移矩形var line_polygons:Array[PackedVector2Array] = []     # 存储交集斜线的的偏移矩形var steps = draw_lenth / spacingfor i in range(steps+1):var line:PackedVector2Array = [p1,p2]line = Transform2D(0,Vector2(-spacing * i,0)) * lineold_lines.append(line[0])old_lines.append(line[1])# 根据斜线求偏移矩形var line_rect = Geometry2D.offset_polyline(line,lines_width/2.0)old_line_rects.append_array(line_rect)#draw_colored_polygon(line_rect[0],lines_color)# 求折线形式的交集var jiao = Geometry2D.intersect_polyline_with_polygon(line,shape) # 求交集部分if jiao.size() > 0:lines.append(jiao[0][0])lines.append(jiao[0][1])# 求偏移矩形的交集var jiao_polygon = Geometry2D.intersect_polygons(line_rect[0],shape) # 求交集部分if jiao_polygon.size() > 0:line_polygons.append(jiao_polygon[0])# 绘制多边形填充draw_polygon(shape,[fill_color])# 绘制斜线多边形for polygon in line_polygons:draw_colored_polygon(polygon,lines_color)# 绘制原始斜线#draw_multiline(old_lines,Color.AQUA,lines_width)# 绘制第一条原始斜线#draw_line(p1,p2,Color.RED,1)# 绘制斜线填充#draw_multiline(lines,lines_color,lines_width)# 绘制多边形轮廓draw_polyline(shape,border_color,1)# 获取图形的矩形
func get_rect(shape:PackedVector2Array) -> Rect2:# 拆分出X坐标和Y坐标数组var x_arr = []var y_arr = []for p in shape:x_arr.append(p.x)y_arr.append(p.y)# 最小值构成Rect2的offsetvar pos = Vector2(x_arr.min(),y_arr.min())# 最大值 - pos = Rect2 的 sizevar siz = Vector2(x_arr.max(),y_arr.max()) - posreturn Rect2(pos,siz)

部分测试截图如下:

不绘制多边形填充和轮廓的效果

绘制了多边形填充和轮廓的效果

总结

本篇简要描述了多边形斜线填充算法的简单思路,当然这里只是初步的测试,只适用于凸多边形在0到90度之间的情况。

上面例子中的凹多边形在一定0到90度之间的某些清下也会出现错误,如下图:

凹多边形在一定角度下的求解错误

这种错误其实也可以通过将凹多边形拆解为若干凸多边形求解。

0到90度之外的求解本篇并没有补足,但是大致思路是一致的。

展望

斜线填充只是最简单的一种图案(Pattern)填充形式。但在拿下斜线填充之后,剩下的无论是波浪线、棋盘格等等都有了基础的求解思路。

矢量蒙版和图片填充

蒙版是一个像素图概念,基于Godot的BitMap类型,可以创建和还原硬边缘的蒙版效果。

而通过矢量多边形栅格化,我们可以创建BitMap,从而实现矢量蒙版,而有了矢量蒙版,就可以实现多边形的图案填充。

多边形图片填充的基本思路

这篇关于【Godot4.3】多边形的斜线填充效果基础实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147613

相关文章

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实