【Godot4.3】多边形的斜线填充效果基础实现

2024-09-08 08:28

本文主要是介绍【Godot4.3】多边形的斜线填充效果基础实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

图案(Pattern)填充是一个非常常见的效果。其中又以斜线填充最为简单。本篇就探讨在Godot4.3中如何使用Geometry2DCanvasItem的绘图函数实现斜线填充效果。

基础思路

Geometry2D类提供了多边形和多边形以及多边形与折线的布尔运算。按照自然的思路,多边形的斜线填充应该属于“多边形与折线的布尔运算”范畴。

第一个问题是如何获得斜线,这条斜线应该满足什么样的条件,除了方向,长度应该怎么确定,又应该从什么地方开始排布,需要阵列多少根?如何才能既满足多边形的填充,又不至于在长度和数量上产生浪费。

围绕这个问题,我思考的答案是——求多边形的矩形包围盒(Rect2):

  • 斜线的方向可以用与X轴正方向的夹角定义(与Vector2angle()的定义一致)
  • 初始斜线的一个端点要与Rect2的某个顶点重合(具体与斜线的方向有关),然后与Rect2的宽边或者高边围成一个直角三角形,斜线的长度就等于直角三角形斜边的长度。
  • 通过计算我们可以获得第一条斜线
  • 然后按照间隔进行偏移,就可以得到所有斜线
  • 偏移的总距离 = Rect2的宽度或者高度,与第三边的和
  • 需要偏移的次数 = 偏移的总距离/斜线间隔

下图是上述思路的图解:

多边形求填充斜线的思路

最后就是遍历所有斜线,用Geometry2D求多边形与斜线的交集,最终绘制时只绘制这部分就可以了。

斜线的求取和偏移方向与方向有关

测试

基于上面的思路,我创建了一个基础的测试场景。

根节点代码如下:

# 多边形的斜线填充测试
# 作者:巽星石
# 20249722:29:12
@tool
extends Node2Dvar shape:PackedVector2Array = [Vector2(0,0),Vector2(50,30),Vector2(100,20),Vector2(90,80),Vector2(60,100),Vector2(0,0),
]## 形状的轮廓颜色
@export var border_color:=Color.RED:set(val):border_color = valqueue_redraw()## 形状的填充颜色
@export var fill_color:=Color.WHITE:set(val):fill_color = valqueue_redraw()## 斜线的颜色
@export var lines_color:=Color.RED:set(val):lines_color = valqueue_redraw()## 斜线的宽度
@export var lines_width:=1.0:set(val):lines_width = valqueue_redraw()## 斜线与X轴正方向的夹角
@export_range(-360.0,360.0,1.0) var line_angle:=45.0:set(val):line_angle = valqueue_redraw()## 斜线之间的间距
@export var spacing:float = 10.0:set(val):spacing = valqueue_redraw()func _draw() -> void:# 绘制矩形var rect = get_rect(shape)var rect_w = rect.size.xvar rect_h = rect.size.ydraw_rect(rect,Color.AQUA,false,1)# 根据斜线与X轴夹角计算出其第一条线var dir = Vector2.RIGHT.rotated(deg_to_rad(line_angle)) # 斜线方向var length = rect_h / cos(deg_to_rad(90 - line_angle)) # 斜线长度var p1 = rect.position + Vector2(rect_w,0)  # 右上角点var p2 = p1 + dir * length# 计算填充长度var draw_lenth = rect_w + length * sin(deg_to_rad(90 - line_angle))draw_line(p1,p1 - Vector2(draw_lenth,0),Color.CHARTREUSE,1)# 计算需要阵列的斜线数目var old_lines:PackedVector2Array = [] # 存储所有原始斜线的数组var lines:PackedVector2Array = [] # 存储所有斜线的数组var steps = draw_lenth / spacingfor i in range(steps+1):var line:PackedVector2Array = [p1,p2]line = Transform2D(0,Vector2(-spacing * i,0)) * lineold_lines.append(line[0])old_lines.append(line[1])var jiao = Geometry2D.intersect_polyline_with_polygon(line,shape) # 求交集部分if jiao.size() > 0:lines.append(jiao[0][0])lines.append(jiao[0][1])# 绘制多边形填充draw_polygon(shape,[fill_color])# 绘制斜线填充draw_multiline(old_lines,Color.AQUA,lines_width)# 绘制斜线填充draw_multiline(lines,lines_color,lines_width)# 绘制多边形轮廓draw_polyline(shape,border_color,1)# 获取图形的矩形
func get_rect(shape:PackedVector2Array) -> Rect2:# 拆分出X坐标和Y坐标数组var x_arr = []var y_arr = []for p in shape:x_arr.append(p.x)y_arr.append(p.y)# 最小值构成Rect2的offsetvar pos = Vector2(x_arr.min(),y_arr.min())# 最大值 - pos = Rect2 的 sizevar siz = Vector2(x_arr.max(),y_arr.max()) - posreturn Rect2(pos,siz)

测试效果:

基础斜线填充测试效果

其中:

  • 绿色线为斜线需要偏移的总距离
  • 红色为第一条斜线
  • 海蓝色线为通过偏移获得的斜线。
  • 原始多边形填充默认为白色,轮廓和斜线都为黑色。

下图是基于line_angle属性值从45°逐渐递增的动态演示:

线太宽时的错误

线宽在一两像素时,而且多边形绘制了轮廓线的效果下,上面的斜线填充看起来十分完美。但是当线宽大于一定数值时,用Polyline形式就出现明显的毛病了,因为所有斜线都被绘制为类似矩形的形状。实际上如果去除多边形的轮廓线,即使是1像素宽的线,也是矩形,求得的斜线也是不完美的。

斜线被绘制为矩形1像素宽也是矩形

所以解决方案就是,将斜线看做是多边形。

而这就需要将折线转变为多边形,好在Geometry2D提供了一个叫offset_polyline()的方法,可以将Polyline通过像素偏移的方式,转化为相应宽度的多边形。

所以问题又变成了求解多边形与多边形交集的问题。

改进后的代码如下:

# 多边形的斜线填充测试(偏移矩形法)
# 作者:巽星石
# 20249800:51:37
# 20249801:14:22
@tool
extends Node2Dvar shape:PackedVector2Array = [Vector2(0,0),Vector2(50,30),Vector2(100,20),Vector2(90,80),Vector2(60,100),Vector2(0,0),
]## 形状的轮廓颜色
@export var border_color:=Color.BLACK:set(val):border_color = valqueue_redraw()## 形状的填充颜色
@export var fill_color:=Color.WHITE:set(val):fill_color = valqueue_redraw()## 斜线的颜色
@export var lines_color:=Color.BLACK:set(val):lines_color = valqueue_redraw()## 斜线的宽度
@export var lines_width:=1.0:set(val):lines_width = valqueue_redraw()## 斜线与X轴正方向的夹角
@export_range(-360.0,360.0,1.0) var line_angle:=45.0:set(val):line_angle = valqueue_redraw()## 斜线之间的间距
@export var spacing:float = 10.0:set(val):spacing = valqueue_redraw()func _draw() -> void:# 绘制矩形var rect = get_rect(shape)var rect_w = rect.size.xvar rect_h = rect.size.y#draw_rect(rect,Color.AQUA,false,1)# 根据斜线与X轴夹角计算出其第一条线var dir = Vector2.RIGHT.rotated(deg_to_rad(line_angle)) # 斜线方向var length = rect_h / cos(deg_to_rad(90 - line_angle)) # 斜线长度var p1 = rect.position + Vector2(rect_w,0)  # 右上角点var p2 = p1 + dir * length# 计算填充长度var draw_lenth = rect_w + length * sin(deg_to_rad(90 - line_angle))#draw_line(p1,p1 - Vector2(draw_lenth,0),Color.CHARTREUSE,1)# 计算需要阵列的斜线数目var old_lines:PackedVector2Array = []             # 存储所有原始斜线的数组var lines:PackedVector2Array = []                 # 存储所有交集斜线的数组var old_line_rects:Array[PackedVector2Array] = [] # 存储原始斜线的的偏移矩形var line_polygons:Array[PackedVector2Array] = []     # 存储交集斜线的的偏移矩形var steps = draw_lenth / spacingfor i in range(steps+1):var line:PackedVector2Array = [p1,p2]line = Transform2D(0,Vector2(-spacing * i,0)) * lineold_lines.append(line[0])old_lines.append(line[1])# 根据斜线求偏移矩形var line_rect = Geometry2D.offset_polyline(line,lines_width/2.0)old_line_rects.append_array(line_rect)#draw_colored_polygon(line_rect[0],lines_color)# 求折线形式的交集var jiao = Geometry2D.intersect_polyline_with_polygon(line,shape) # 求交集部分if jiao.size() > 0:lines.append(jiao[0][0])lines.append(jiao[0][1])# 求偏移矩形的交集var jiao_polygon = Geometry2D.intersect_polygons(line_rect[0],shape) # 求交集部分if jiao_polygon.size() > 0:line_polygons.append(jiao_polygon[0])# 绘制多边形填充draw_polygon(shape,[fill_color])# 绘制斜线多边形for polygon in line_polygons:draw_colored_polygon(polygon,lines_color)# 绘制原始斜线#draw_multiline(old_lines,Color.AQUA,lines_width)# 绘制第一条原始斜线#draw_line(p1,p2,Color.RED,1)# 绘制斜线填充#draw_multiline(lines,lines_color,lines_width)# 绘制多边形轮廓draw_polyline(shape,border_color,1)# 获取图形的矩形
func get_rect(shape:PackedVector2Array) -> Rect2:# 拆分出X坐标和Y坐标数组var x_arr = []var y_arr = []for p in shape:x_arr.append(p.x)y_arr.append(p.y)# 最小值构成Rect2的offsetvar pos = Vector2(x_arr.min(),y_arr.min())# 最大值 - pos = Rect2 的 sizevar siz = Vector2(x_arr.max(),y_arr.max()) - posreturn Rect2(pos,siz)

部分测试截图如下:

不绘制多边形填充和轮廓的效果

绘制了多边形填充和轮廓的效果

总结

本篇简要描述了多边形斜线填充算法的简单思路,当然这里只是初步的测试,只适用于凸多边形在0到90度之间的情况。

上面例子中的凹多边形在一定0到90度之间的某些清下也会出现错误,如下图:

凹多边形在一定角度下的求解错误

这种错误其实也可以通过将凹多边形拆解为若干凸多边形求解。

0到90度之外的求解本篇并没有补足,但是大致思路是一致的。

展望

斜线填充只是最简单的一种图案(Pattern)填充形式。但在拿下斜线填充之后,剩下的无论是波浪线、棋盘格等等都有了基础的求解思路。

矢量蒙版和图片填充

蒙版是一个像素图概念,基于Godot的BitMap类型,可以创建和还原硬边缘的蒙版效果。

而通过矢量多边形栅格化,我们可以创建BitMap,从而实现矢量蒙版,而有了矢量蒙版,就可以实现多边形的图案填充。

多边形图片填充的基本思路

这篇关于【Godot4.3】多边形的斜线填充效果基础实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147613

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如