提示词工程技术:类比、后退、动态少样本、自动生成CoT

2024-03-09 19:12

本文主要是介绍提示词工程技术:类比、后退、动态少样本、自动生成CoT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

类比提示

“类比提示”利用类比推理的概念,鼓励模型生成自己的例子和知识,从而实现更灵活和高效的解决问题。

后退提示

“后退提示”专注于抽象,引导模型推导出高级概念和原理,进而提高其推理能力。

使用一个基本的数学问题来展示“后退提示”技术:

Original Question: If a train travels at a speed of 60 km/h and covers a distance of 120 km, how long will it take?

Options: 3 hours / 2 hours / 1 hour / 4 hours

Original Answer [Incorrect]: The correct answer is 1).

Stepback Question: What is the basic formula to calculate time given speed and distance?

Principles: To calculate time, we use the formula: Time = Distance / Speed.

Final Answer: Using the formula, Time = 120 km / 60 km/h = 2 hours. The correct answer is 2) 2 hours.

动态少样本

少样本学习—为基础模型提供几个任务和响应的示例,使模型能够迅速适应特定领域并学会遵循任务格式。有了足够的可用数据,可以为不同的任务输入选择不同的少样本示例,这种方法称为使用动态少样本示例。该方法利用一种机制根据其与待处理情况的相似度来确认示例。给定一个测试示例,使用k-NN聚类在嵌入空间中选择语义上相似的k个训练示例。具体来说,首先使用OpenAI的text-embedding-ada-002模型对候选示例进行嵌入表示以进行少样本学习。然后,对于每个测试问题x,从训练集中检索其嵌入空间中最近的k个邻居x1、x2、...、xk(根据text-embedding-ada-002的嵌入空间中的距离)。这些示例—在嵌入空间中与测试问题最相似的示例—最终被记录在提示中。

自动生成的思维链 (CoT)

思维链 (CoT) 使用自然语言语句,比如“我们一步一步地思考”,明确地鼓励模型生成一系列中间推理步骤。这种方法被发现显著提高基础模型进行复杂推理的能力。

多数投票集成

集成学习是指将多个算法的输出组合在一起,以产生比任何个别算法更好的预测性能。一种简单的技术是使用多种提示或者使用多种温度来生成单个提示,并报告集成成员中最频繁出现的答案。对于多项选择题,我们使用一种增加集成多样性的进一步技巧,称为选择打乱,即在生成每个推理路径之前打乱答案选项的相对顺序。然后选择最一致的答案,即最不受选择打乱敏感的答案,从而增加了答案的鲁棒性。

其他利器

OpenAI官方提示词教程与实战指南修正版

GPT Engineer和Reflexion—构建AI工程和prompt的利器

Awesome-Prompt-Engineering 最全的AI prompt知识库之一

一个包含了所有GPT AI代理系统提示词的资源库—chatgpt_system_prompt

可构建和定制您自己的AI城镇的热门项目—AI Town

crewAI—用于编排角色扮演的AI agent(超级智能体)

这篇关于提示词工程技术:类比、后退、动态少样本、自动生成CoT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791678

相关文章

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2