大数据-玩转数据-Spark-Structured Streaming 容错(python版)

2024-03-09 17:58

本文主要是介绍大数据-玩转数据-Spark-Structured Streaming 容错(python版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据-玩转数据-Spark-Structured Streaming 容错(python版)

说明:
由于网络问题,链路中断,系统崩溃,JVM故障都会导致数据流的运行结果出现错误,Spark设计了输入源,执行引擎和接收器多个松散耦合组件隔离故障。

输入源通过位置偏移量来记录目前所处位置,引擎通过检查点保存中间状态,接收器使用“幂等”的接收器来保障输出的稳定性。

我们希望数据是它产生的时间,而不是到达的时间,Spark模型当中,事件时间是数据中的一列,为了避免存储空间无限扩大,同时还引入“水印”机制,将超过时间阈值的数据抛弃掉。

代码举例

#!/usr/bin/env python3
# -*- coding: utf-8 -*-# 导入需要用到的模块
import os
import shutil
from functools import partialfrom pyspark.sql import SparkSession
from pyspark.sql.functions import window
from pyspark.sql.types import StructType, StructField
from pyspark.sql.types import TimestampType, StringType# 定义CSV文件的路径常量
TEST_DATA_DIR = '/tmp/testdata/'
TEST_DATA_DIR_SPARK = 'file:///tmp/testdata/'# 测试的环境搭建,判断CSV文件夹是否存在,如果存在则删除旧数据,并建立文件夹
def test_setUp():if os.path.exists(TEST_DATA_DIR):shutil.rmtree(TEST_DATA_DIR, ignore_errors=True)os.mkdir(TEST_DATA_DIR)# 测试环境的恢复,对CSV文件夹进行清理
def test_tearDown():if os.path.exists(TEST_DATA_DIR):shutil.rmtree(TEST_DATA_DIR, ignore_errors=True)# 写模拟输入的函数,传入CSV文件名和数据。注意写入应当是原子性的
# 如果写入时间较长,应当先写到临时文件在移动到CSV目录内。
# 这里采取直接写入的方式。
def write_to_cvs(filename, data):with open(TEST_DATA_DIR + filename, "wt", encoding="utf-8") as f:f.write(data)if __name__ == "__main__":test_setUp()# 定义模式,为字符串类型的word和时间戳类型的eventTime两个列组成schema = StructType([StructField("word", StringType(), True),StructField("eventTime", TimestampType(), True)])spark = SparkSession \.builder \.appName("StructuredNetworkWordCountWindowedDelay") \.getOrCreate()spark.sparkContext.setLogLevel('WARN')lines = spark \.readStream \.format('csv') \.schema(schema) \.option("sep", ";") \.option("header", "false") \.load(TEST_DATA_DIR_SPARK)# 定义窗口windowDuration = '1 hour'windowedCounts = lines \.withWatermark("eventTime", "1 hour") \.groupBy('word', window('eventTime', windowDuration)) \.count()query = windowedCounts \.writeStream \.outputMode("update") \.format("console") \.option('truncate', 'false') \.trigger(processingTime="8 seconds") \.start()# 写入测试文件file1.cvswrite_to_cvs('file1.cvs', """
正常;2018-10-01 08:00:00
正常;2018-10-01 08:10:00
正常;2018-10-01 08:20:00
""")# 处理当前数据query.processAllAvailable()# 这时候事件时间更新到上次看到的最大的2018-10-01 08:20:00write_to_cvs('file2.cvs', """
正常;2018-10-01 20:00:00
一小时以内延迟到达;2018-10-01 10:00:00
一小时以内延迟到达;2018-10-01 10:50:00
""")# 处理当前数据query.processAllAvailable()# 这时候事件时间更新到上次看到的最大的2018-10-01 20:00:00write_to_cvs('file3.cvs', """
正常;2018-10-01 20:00:00
一小时外延迟到达;2018-10-01 10:00:00
一小时外延迟到达;2018-10-01 10:50:00
一小时以内延迟到达;2018-10-01 19:00:00
""")# 处理当前数据query.processAllAvailable()query.stop()test_tearDown()

这篇关于大数据-玩转数据-Spark-Structured Streaming 容错(python版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791484

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符