RNN(Recurrent Neural Networks)循环神经网络

2024-03-09 16:52

本文主要是介绍RNN(Recurrent Neural Networks)循环神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

循环神经网络(Recurrent Neural Network,简称RNN)是一种处理序列数据的神经网络结构,它具有记忆能力,能够捕捉序列中的时序信息。RNN在自然语言处理、时间序列预测等方面有着很多的应用。

一、RNN 的基本结构

RNN的包括输入层、隐藏层和输出层。其中,隐藏层的状态会随时间步更新,并作为下一时间步的输入之一。这种循环连接使得RNN具有记忆能力,能够捕捉序列中的长距离依赖关系。

1、单层网络结构

在进一步了解RNN之前,先给出最基本的单层网络结构,输入是x,经过变换为W x + b,激活函数为f,输出y可以表示为y=f(W x + b),是一个无隐藏的单层感知器。

2、加入隐藏层

在单层网络结构的基础上引入了隐藏层h ,h 可对序列数据提取特征,接着再转换为输出。

RNN中,每个步骤权值共享,使用的参数U,W,b​相同(所有隐藏层都同一个U,W,b进行更新),h2的计算方式和h1类似,其计算结果如下:

接下来,计算RNN的输出y1,使用Softmax激活函数:

使用和y1相同的参数V和c,得到y2,y3,y4,得到如下结构图:

如果上面的图不够明显,可以看看下面这张图,会更清晰一些:

二、RNN常见的问题及解决办法

1、梯度消失

梯度消失问题是指 RNN 中的梯度在向后传播时减小或消失的问题。这是由于反向传播过程中梯度的重复乘法,这可能导致梯度呈指数下降。所以在激活函数输出时,可以将sigmoid换成RELU等其他激活函数,使得输出不要太过小。当然也不能都是1,否则会引起梯度爆炸。

2、RNN和MLP有什么区别

(1)RNNs引入了定向循环,能够处理输入之间前后关联问题,使其能够记住一定序列范围内的信息。

(2)RNNs网络参数W,U,V是共享的,而MLP各层参数间没有直接联系。

3、其他有遇到的问题再补充。。。

这篇关于RNN(Recurrent Neural Networks)循环神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791303

相关文章

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

JAVA中while循环的使用与注意事项

《JAVA中while循环的使用与注意事项》:本文主要介绍while循环在编程中的应用,包括其基本结构、语句示例、适用场景以及注意事项,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录while循环1. 什么是while循环2. while循环的语句3.while循环的适用场景以及优势4. 注意

Python中的异步:async 和 await以及操作中的事件循环、回调和异常

《Python中的异步:async和await以及操作中的事件循环、回调和异常》在现代编程中,异步操作在处理I/O密集型任务时,可以显著提高程序的性能和响应速度,Python提供了asyn... 目录引言什么是异步操作?python 中的异步编程基础async 和 await 关键字asyncio 模块理论

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

poj3750约瑟夫环,循环队列

Description 有N个小孩围成一圈,给他们从1开始依次编号,现指定从第W个开始报数,报到第S个时,该小孩出列,然后从下一个小孩开始报数,仍是报到S个出列,如此重复下去,直到所有的小孩都出列(总人数不足S个时将循环报数),求小孩出列的顺序。 Input 第一行输入小孩的人数N(N<=64) 接下来每行输入一个小孩的名字(人名不超过15个字符) 最后一行输入W,S (W < N),用

校验码:奇偶校验,CRC循环冗余校验,海明校验码

文章目录 奇偶校验码CRC循环冗余校验码海明校验码 奇偶校验码 码距:任何一种编码都由许多码字构成,任意两个码字之间最少变化的二进制位数就称为数据检验码的码距。 奇偶校验码的编码方法是:由若干位有效信息(如一个字节),再加上一个二进制位(校验位)组成校验码。 奇校验:整个校验码中1的个数为奇数 偶校验:整个校验码中1的个数为偶数 奇偶校验,可检测1位(奇数位)的错误,不可纠错。

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ