本文主要是介绍弗罗贝尼乌斯范数 matlab,Matlab求范数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
对 p = 2,这称为弗罗贝尼乌斯范数(Frobenius norm)或希尔伯特-施密特范数( Hilbert–Schmidt norm),不过后面这个术语通常只用于希尔伯特空间。这个范数可用不同的方式定义:
这里 A* 表示 A 的共轭转置,σi 是 A 的奇异值,并使用了迹函数。弗罗贝尼乌斯范数与 Kn 上欧几里得范数非常类似,来自所有矩阵的空间上一个内积。
弗罗贝尼乌斯范范数是服从乘法的且在数值线性代数中非常有用。这个范数通常比诱导范数容易计算。
%X为向量,求欧几里德范数,即 。
n = norm(X,inf) %求 无穷-范数,即 。
n = norm(X,1) %求1-范数,即 。
n = norm(X,-inf) %求向量X的元素的绝对值的最小值,即 。
n = norm(X, p) %求p-范数,即 ,所以norm(X,2) = norm(X)。
命令 矩阵的范数函数 norm格式 n = norm(A) %A为矩阵,求欧几里德范数 ,等于A的最大奇异值。
这篇关于弗罗贝尼乌斯范数 matlab,Matlab求范数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!