Unity | Shader基础知识(第八集:案例<漫反射材质球>)

2024-03-08 14:40

本文主要是介绍Unity | Shader基础知识(第八集:案例<漫反射材质球>),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、本节介绍

1 上集回顾

2 本节介绍

二、什么是漫反射材质球

三、 漫反射进化史

1 三种算法结果的区别

2 具体算法

2.1 兰伯特逐顶点算法

a.本小节使用的unity自带结构体。

b.兰伯特逐顶点算法公式

c.代码实现——兰伯特逐顶点算法

2.2 代码实现——兰伯特逐像素算法

a.像素和顶点算法的区别

b.实现代码

 2.3 代码实现——半兰伯特算法

a.为什么会出现半兰伯特

b.半兰伯特公式

c.代码实现

四、下集介绍


一、本节介绍

1 上集回顾

本集讲了如何让图片和外部颜色叠加显示。

2 本节介绍

如何做一个漫反射材质球。

二、什么是漫反射材质球

1 之前的颜色材质球

我们目前只学过直接上色的材质球(如图1所示),还有上节课的颜色和图片叠加的材质球。

图1 材质球

2 现实的光照下的球

现实光照下的大部分材质球并不是纯色且全亮的,而是(如图2所示)。

图2 现实中的球

 这种模拟大部分现实世界物体发光的状态,就是漫反射材质球。

备注:

反射有两种:镜面反射和漫反射。像镜子的反光,非常光滑的物体反光(比如金属),属于镜面反射,其他大部分是漫反射。具体区别详见初中物理~自己百度哦o(* ̄︶ ̄*)o

三、 漫反射进化史

我们算到最后,对屏幕来说,仅仅想知道,我这个点应该用什么颜色。

所以,对这个颜色的计算出现了三种解法。

  • 兰伯特逐顶点算法
  • 兰伯特逐像素算法
  • 半兰伯特算法

备注:兰伯特是个人,他和别人一起研究出来了以上三个定律。

1 三种算法结果的区别

兰伯特逐顶点算法(白色和黑色交界处有些方块块的感觉、照不到的地方全黑)

兰伯特逐像素算法(白色和黑色交界处平滑过渡、照不到的地方全黑)

半兰伯特算法(白色和黑色交界处平滑过渡、照不到的地方不是全黑)

内容参考(侵权立删):

Unity Shader 漫反射(Lambert、Half Lambert) - 知乎

图3 三种算法得到的效果

2 具体算法

2.1 兰伯特逐顶点算法
a.本小节使用的unity自带结构体。
struct appdata_full {float4 vertex : POSITION;    //顶点坐标float4 tangent : TANGENT;    //切线float3 normal : NORMAL;      //法线float4 texcoord : TEXCOORD0;    //第一纹理坐标float4 texcoord1 : TEXCOORD1;//第二纹理坐标float4 texcoord2 : TEXCOORD2;//第三纹理坐标float4 texcoord3 : TEXCOORD3;//第四纹理坐标fixed4 color : COLOR;        //顶点颜色UNITY_VERTEX_INPUT_INSTANCE_ID    //ID信息
};
b.兰伯特逐顶点算法公式


公式解释:

屏幕上对应点的颜色 = (光的颜色*物体的颜色)*max(0,该点的法向量*该点的光照方向)


备注(max函数解释):

max(a,b),如果这里面a大,答案就是a

如果b大,答案就是b。

例:

max(5,20)=20

max(8,-9)=8

此处的作用:

因为颜色没有负数,如果n*l算出来小于0的时候,就直接为0,其他时候就是n*l的值。

其实就是起一个“一刀切”掉负数的作用。


得出结论:我们想计算漫反射的时候屏幕显示什么颜色,我们需要光的颜色物体的颜色该点的法向量(单位向量)该点的光照方向(单位向量)

备注:公式里的字母上带^就是单位向量的意思。

c.代码实现——兰伯特逐顶点算法

计算注意事项:

在计算n*l时,注意:该点的法向量(往往直接获取的是物体本地坐标),该点的光照方向(往往获取的是世界坐标)

这样是不能乘的,所以需要把他们都换算到一个坐标系,这里换算到世界坐标下。

会用到的方法:

UnityObjectToWorldNormal()     //把物体的法线坐标,换算到世界坐标下
normalize()                    //把任何一个向量变成单位向量
dot()                          //点乘
max()                          //上文讲过_WorldSpaceLightPos0           //世界坐标下的光线坐标//但是要引用#include "Lighting.cginc"才能找到

 实现的代码:

 SubShader{Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"//新的引用#include "Lighting.cginc"//返回结构体        //引用结构体appdata_full vert (appdata_full v){    //模型顶点坐标转屏幕坐标v.vertex = UnityObjectToClipPos(v.vertex);//获取法线坐标并转换成世界坐标下的法线坐标float3 worldNormal = UnityObjectToWorldNormal(v.normal);//世界坐标下的光线坐标  //单位化坐标   //获取世界坐标下的光线坐标float3 worldLight = normalize(_WorldSpaceLightPos0.xyz);//上面的公式float3 diffuse =_LightColor0.rgb * v.color.rgb * max(0,dot(worldNormal,worldLight));//算出的值给颜色v.color = float4(diffuse,1);return v;}float4 frag (appdata_full v) : SV_Target{    //输出颜色    return float4(v.color,1) ;}ENDCG}}
2.2 代码实现——兰伯特逐像素算法
a.像素和顶点算法的区别
  • 从写法角度来看,顶点算法是在顶点着色器中写的,像素算法是在片元着色器中写的。
  • 从原理角度来说,因为顶点是初始值,经过一系列计算后,数据就会和我们想要的有些偏差。

例:让你拿笔写一个字,你可能就写了,但是让你拿竹竿上面绑个中性笔写字,你就写不准了,肯定是离画出来的地方越近,画出来越是自己想要的。

结论:像素着色器离最后的显示比较近,所以出来的结果和我们想要的更一致。

b.实现代码
Shader "Unlit/005_1"
{SubShader{Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"#include "Lighting.cginc"appdata_full vert (appdata_full v){   v.vertex = UnityObjectToClipPos(v.vertex);//把法线转换成世界坐标,传进去v.normal = UnityObjectToWorldNormal(v.normal);return v;}float4 frag (appdata_full v) : SV_Target{//法线世界坐标float3 worldNormal = v.normal;//光线世界坐标float3 worldLight = normalize(_WorldSpaceLightPos0.xyz);//计算颜色float3 diffuse =_LightColor0.rgb * v.color.rgb * max(0,dot(worldNormal,worldLight));//把颜色传进去return float4(diffuse,1) ;}ENDCG}}
}
 2.3 代码实现——半兰伯特算法
a.为什么会出现半兰伯特

兰伯特的两个算法,得到的球,在没有光线照射的时候都是黑色的,但玩游戏的时候往往希望,虽然光线无法照到,但我们可以看见。

数学知识:公式中的n*l值的范围是【-1,1】之间,我们希望把这个区间改成【0,1】(前面的课学过),【-1,1】*0.5+0.5,就可以转成【0,1】,0的时候就是之前光照模型中黑色部分,越靠近1越亮。

因为我们实际上并不是需要它看不见,只是需要它要明暗变化,所以我们在环境光的基础上加上兰伯特公式计算出的值,就有了明暗变化。

于是就出现了第三种,半兰伯特。

b.半兰伯特公式

在上图基础上:

最终颜色  = 环境光+Cdiffuse

c.代码实现

这里其他代码都没有变,只更改了上图0.5的部分。最后输出前,再加入环境光。

备注:

获取环境光强度的方法:UNITY_LIGHTMODEL_AMBIENT.xyz

Shader "Unlit/005_2"
{SubShader{Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"#include "Lighting.cginc"appdata_full vert (appdata_full v){v.vertex = UnityObjectToClipPos(v.vertex);v.normal = UnityObjectToWorldNormal(v.normal);return v;}float4 frag (appdata_full v) : SV_Target{float3 worldNormal = v.normal;float3 worldLight = normalize(_WorldSpaceLightPos0.xyz);//本节变动//获取环境光float3 anbient = UNITY_LIGHTMODEL_AMBIENT.xyz;//计算范围float halfLamient = dot(worldNormal,worldLight)*0.5+0.5;//计算反射强度float3 diffuse =_LightColor0.rgb * v.color.rgb *halfLamient;//反射光加光照强度float3 c = anbient + diffuse;return float4(c,1) ;}ENDCG}}
}

四、下集介绍

本集讲了3种计算反射光的方法。

下集讲光照计算,高光反射。(最晚更新日期,1月7日)

这篇关于Unity | Shader基础知识(第八集:案例<漫反射材质球>)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787421

相关文章

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

计组基础知识

操作系统的特征 并发共享虚拟异步 操作系统的功能 1、资源分配,资源回收硬件资源 CPU、内存、硬盘、I/O设备。2、为应⽤程序提供服务操作系统将硬件资源的操作封装起来,提供相对统⼀的接⼝(系统调⽤)供开发者调⽤。3、管理应⽤程序即控制进程的⽣命周期:进程开始时的环境配置和资源分配、进程结束后的资源回收、进程调度等。4、操作系统内核的功能(1)进程调度能⼒: 管理进程、线