端到端自动驾驶通用算法框架UniAD

2024-03-08 12:28

本文主要是介绍端到端自动驾驶通用算法框架UniAD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

端到端自动驾驶通用算法框架UniAD

引言

自动驾驶是一项高度复杂的技术,需要多个学科领域的知识和技能,包括传感器技术、机器学习、路径规划等方面。自动驾驶还需要适应不同的道路规则和交通文化,与其他车辆和行人进行良好的交互,以实现高度可靠和安全的自动驾驶系统。面对这种复杂的场景,大部分自动驾驶相关的工作都聚焦在具体的某个模块,关于框架性的研讨则相对匮乏。自动驾驶通用算法框架——Unified Autonomous Driving(UniAD)首次将检测、跟踪、建图、轨迹预测,占据栅格预测以及规划整合到一个基于 Transformer 的端到端网络框架下, 完美契合了 “多任务”和“高性能”的特点,可称为自动驾驶中的技术突破。地平线与上海人工智实验室提出了自动驾驶通用算法框架——Unified Autonomous Driving(UniAD)。UniAD 首次将检测,跟踪,建图,轨迹预测,占据栅格预测以及规划整合到一个基于 Transformer 的端到端网络框架下,在 nuScenes 数据集下的所有相关任务都达到 SOTA 性能,尤其是预测和规划效果远超其他模型。
在这里插入图片描述

感知决策一体化自动驾驶大模型

自动驾驶是一个高度复杂的技术体系,不仅需要多个学科领域的知识和技能,包括传感器硬件、机器学习、多模态融合等内容,还需要适应不同国家与地区的道路规则和交通文化,与车辆及行人进行良好的交互,以实现高度的可靠性和安全性。
自动驾驶系统中包含三大主任务即,感知、预测和规划。当前,业界主流的方案架构分别采用不同的模块来处理这些具体任务,但由于各模块并非以驾驶为最终目标进行优化,因而自动驾驶系统的整体性能提升受到了很大限制。
在UniAD中,研究人员首次将感知、预测和规划等三大类主任务、六小类子任务(目标检测、目标跟踪、场景建图、轨迹预测、栅格预测和路径规划)整合到统一的基于 Transformer的端到端网络框架下,实现了全栈关键任务驾驶通用模型。在 nuScenes 真实场景数据集下,UniAD的所有任务均达到领域最佳性能(State-of-the-art),尤其是预测和规划效果远超之前的最佳方案。其中,多目标跟踪准确率超越SOTA 20%,车道线预测准确率提升30%,预测运动位移和规划的误差则分别降低了38%和28%。
在这里插入图片描述

核心技术

多组 query 的全 Transformer 模型

UniAD利用多组query 实现了全栈Transformer的端到端模型,我们可以从具体 Transformer的输入输出感受到信息融合。

  • 在TrackFormer中,Track query通过与BEV特征通过attention的方式进行交互,输出Track特征QA。
  • Map query经过MapFormer的更新后,得到特征QM
  • MotionFormer使用Motion query与QA、QM以及BEV特征进行交互,得到未来轨迹特征QX。
  • OccFormer 以密集的BEV特征为Q和稀疏的特征QA对应的位置信息PA和QX作为K和V来构建实例级别的占据栅格。

基于最终“规划”为目标

在 TrackFormer 中,Track query 中包含一个特定的 ego-vehicle query 用来表示自车属性。规划模块 (Planner) 将 MotionFormer 更新后的 ego-vehicle query 与 BEV 特征进行交互,此时 ego-vehicle query 包含对整个环境的感知与预测信息,因此能更好的学习 planning 任务。为了减少碰撞,我们还利用占据栅格预测模块 OccFormer 的输出对自车路径进行优化,避免行驶到未来可能有物体占用的区域。在这个过程中,全部的模块通过输出特定的特征来帮助实现最终的目标“规划”。

整体流程优化

当前大部分自动驾驶系统研究,都聚焦在具体的某个模块,缺少能够实现端到端联合优化的通用网络模型。现有的自动驾驶系统可大致归为三类:(a)模块化组成的系统;(b)多任务模块架构的系统;(c)端到端自动驾驶系统。在这里插入图片描述

其中传统的端到端算法可分为:基础的端到端算法,直接从传感器输入预测控制输出,但是优化困难,在充满复杂视觉信息的真实场景中应用面临较大挑战;(按照任务划分网络的显式设计,但是网络模块之间缺乏有效的特征沟通,需要分阶段的输出结果,任务间缺乏有效交互。本文提出的决策导向的感知决策一体设计方法,用token特征按照感知-预测-决策的流程进行深度融合,使得以决策为目标的各项任务指标一致提升。

未来展望

总的来说,UniAD 作为一项极具创新性的自动驾驶技术,具有很大的潜力和应用价值。尽管该技术目前仍处于发展初期,但其已经引起了人们的广泛兴趣和关注,未来的发展前景非常值得期待。希望UniAD能充分利用现在海量数据驱动的优势,在未来实现高阶的自动驾驶人工智能。

参考链接

  • https://blog.csdn.net/CV_Autobot/article/details/131356302
  • https://mp.weixin.qq.com/s/8svV4yxRi6TikcRivgHr_A
  • https://zhuanlan.zhihu.com/p/616433397

这篇关于端到端自动驾驶通用算法框架UniAD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787081

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.