进程间通信之信号灯 || 网络协议UDP/TCP || 三次握手四次挥手

本文主要是介绍进程间通信之信号灯 || 网络协议UDP/TCP || 三次握手四次挥手,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在线程通信中由于数据段等内存空间的共用性,导致同时访问时资源竞争的问题,在线程中我们使用信号量的申请和释放,在防止资源竞争的产生。在进程间的通信中,有信号灯的概念。搭配共享内存实现进程同步。

有名信号量:
    1.创建
        semget 
        int semget(key_t key, int nsems, int semflg);
        功能:
            创建一组信号量
        参数:
            key:IPC对象名
            nsems:信号量的个数
            semflg:IPC_CREAT 
        返回值:
            成功返回信号量ID
            失败返回-1 

    2.销毁 
        semctl
        int semctl(int semid, int semnum, int cmd, ...);
        功能:   
            向信号灯发送命令
        参数:
            semid:信号灯ID号
            semnum:具体操作信号量的编号
            cmd:
                IPC_RMID    删除信号灯
                SETVAL      设置信号量的值
        返回值:
            成功返回0
            失败返回-1 

        初始化:
        union semun {
            int              val;    /* Value for SETVAL */
            struct semid_ds *buf;    /* Buffer for IPC_STAT, IPC_SET */
            unsigned short  *array;  /* Array for GETALL, SETALL */
            struct seminfo  *__buf;  /* Buffer for IPC_INFO
                                        (Linux-specific) */
        };

    3.申请信号量
    4.释放信号量
        semop 
        int semop(int semid, struct sembuf *sops, size_t nsops);
        功能:
            对信号量完成操作
        参数:
            semid:信号灯的ID号
            sops:信号量操作的数组首地址
            nsops:数组元素个数
        返回值:
            成功返回0 
            失败返回-1 

         unsigned short sem_num;  /* semaphore number */        操作信号量的下标
         short          sem_op;   /* semaphore operation */     具体对信号量的操作(申请:-1  释放:+1)
         short          sem_flg;  /* operation flags */         SEM_UNDO
 


网络编程:

网络:
    数据传输,数据共享

1.网络协议模型:
    OSI协议模型
        应用层              实际发送的数据
        表示层              发送的数据是否加密
        会话层              是否建立会话连接
        传输层              数据传输的方式(数据报、流式)
        网络层              数据的路由(如何从一个局域网到达另一个局域网)        IP地址
        数据链路层          局域网下如何通信
        物理层              物理介质的连接

    TCP/IP协议模型   
        应用层              传输的数据
        传输层              传输的方式
        网络层              数据如何从一台主机到达另一台主机
        网络接口层          物理介质的连接

    应用层:
        HTTP    超文本传输协议
        HTTPS   
        FTP     文件传输协议
        TFTP    简单文本传输协议
        SMTP    邮件传输协议
        MQTT    
        TELNET  
        ..
    
    传输层:
        UDP     用户数据报协议
                特点:
                    1.实现机制简单
                    2.资源开销小
                    3.不安全不可靠

        TCP     传输控制协议
                特点:
                    1.实现机制复杂
                    2.资源开销大
                    3.安全可靠

TCP可靠依赖于:三次握手四次挥手

三次握手:SYN->             <-ACK+SYN

                  ACK->

当客户端想和服务器建立传输的时候,会首先发送信息进行确认,服务器获得信息后,返回接受到信息,为了让服务器也了解到对方就收到,客户端也会发送一条信息最后返回给服务器。

四次挥手:断开连接:首先发送断开请求,SYN->         客端收到信息后,返回ACK并等待数据传输完成。

完成之后发送< - SYN

主机返回 ACK->        四次挥手结束。

关于子网掩码和网络位,主机位

    网络层:
        IPv4

        IP地址:唯一标识网络中一台主机的标号
        IP地址:网络位 + 主机位
        子网掩码:用来标识IP地址的网络位和主机位
                子网掩码是1的部分表示IP地址的网络位
                子网掩码是0的部分表示IP地址的主机位
        网段号:网络位不变,主机位全为0,表示网段号
        广播地址:网络位不变,主机位全为1,表示广播地址

        IP地址类型:
        A类
            1.0.0.0 - 126.255.255.255
            子网掩码:255.0.0.0
            管理超大规模网络
            10.0.0.0 - 10.255.255.255 

        B类
            128.0.0.0 - 191.255.255.255
            子网掩码:255.255.0.0 
            管理大中规模型网络
            172.16.0.0 - 172.31.255.255

        C类
            192.0.0.0 - 223.255.255.255
            子网掩码:255.255.255.0
            管理中小规模型网络 
            192.168.0.0 - 192.168.255.255

        D类
            224.0.0.0 - 239.0.0.0
            用于组播

        E类
            240.0.0.0 - 255.255.255.255 
            用于实验

2.UDP编程
    socket套接字编程:
    1.发端:
        socket 
        int socket(int domain, int type, int protocol);
        功能:
            创建一个用来通信的文件描述符
        参数:
            domain:使用的协议族 AF_INET (IPv4协议族)
            type:套接字类型
                SOCK_STREAM:流式套接字
                SOCK_DGRAM:数据报套接字
                SOCK_RAW:原始套接字
            protocol:协议
                默认为0 
        返回值:
            成功返回文件描述符
            失败返回-1 

        sendto 
        ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
        功能:
            利用套接字向指定地址发送数据信息 
        参数:
            sockfd:套接字文件描述符
            buf:发送数据空间首地址
            len:发送数据的长度
            flags:属性默认为0 
            dest_addr:目的地址信息存放的空间首地址
            addrlen:目的地址的长度
        
        struct sockaddr_in {
            sa_family_t    sin_family; /* address family: AF_INET */
            in_port_t      sin_port;   /* port in network byte order */
            struct in_addr sin_addr;   /* internet address */
        };

        /* Internet address. */
        struct in_addr {
            uint32_t       s_addr;     /* address in network byte order */
        };
                  
        返回值:
            成功返回实际发送字节数
            失败返回-1 

        inet_addr:
        in_addr_t inet_addr(const char *cp);
        功能:  
            将字符串IP地址转换为内存中的IP地址 

        htons
        uint16_t htons(uint16_t hostshort);
        功能:
            将本地字节序转换为网络的大端字节序
        
        close 

这篇关于进程间通信之信号灯 || 网络协议UDP/TCP || 三次握手四次挥手的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/783336

相关文章

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

VC网络协议

// PCControlDlg.cpp : 实现文件//#include "stdafx.h"#include "PCControl.h"#include "PCControlDlg.h"#include "afxdialogex.h"#ifdef _DEBUG#define new DEBUG_NEW#endif// 用于应用程序“关于”菜单项的 CAboutDlg 对话框#ifde

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(

java 进程 返回值

实现 Callable 接口 与 Runnable 相比,Callable 可以有返回值,返回值通过 FutureTask 进行封装。 public class MyCallable implements Callable<Integer> {public Integer call() {return 123;}} public static void main(String[] args

2024.9.8 TCP/IP协议学习笔记

1.所谓的层就是数据交换的深度,电脑点对点就是单层,物理层,加上集线器还是物理层,加上交换机就变成链路层了,有地址表,路由器就到了第三层网络层,每个端口都有一个mac地址 2.A 给 C 发数据包,怎么知道是否要通过路由器转发呢?答案:子网 3.将源 IP 与目的 IP 分别同这个子网掩码进行与运算****,相等则是在一个子网,不相等就是在不同子网 4.A 如何知道,哪个设备是路由器?答案:在 A

C#关闭指定时间段的Excel进程的方法

private DateTime beforeTime;            //Excel启动之前时间          private DateTime afterTime;               //Excel启动之后时间          //举例          beforeTime = DateTime.Now;          Excel.Applicat

linux中使用rust语言在不同进程之间通信

第一种:使用mmap映射相同文件 fn main() {let pid = std::process::id();println!(

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端

java线程深度解析(二)——线程互斥技术与线程间通信

http://blog.csdn.net/daybreak1209/article/details/51307679      在java多线程——线程同步问题中,对于多线程下程序启动时出现的线程安全问题的背景和初步解决方案已经有了详细的介绍。本文将再度深入解析对线程代码块和方法的同步控制和多线程间通信的实例。 一、再现多线程下安全问题 先看开启两条线程,分别按序打印字符串的

Golang进程权限调度包runtime

关于 runtime 包几个方法: Gosched:让当前线程让出 cpu 以让其它线程运行,它不会挂起当前线程,因此当前线程未来会继续执行GOMAXPROCS:设置最大的可同时使用的 CPU 核数Goexit:退出当前 goroutine(但是defer语句会照常执行)NumGoroutine:返回正在执行和排队的任务总数GOOS:目标操作系统NumCPU:返回当前系统的 CPU 核数量 p