代码随想录算法训练营Day52 | 300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

本文主要是介绍代码随想录算法训练营Day52 | 300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

300.最长递增子序列

这题的重点是DP数组的定义,子序列必须以nums[i]为最后一个元素,这样dp数组中后面的元素才能与前面的元素进行对比

1、DP数组定义:dp[i]表示以nums[i]为最后一个元素的最长递增子序列长度

2、DP数组初始化:全部初始化为1(子序列最少也有自身一个)

3、递推公式与 i 前所有元素进行对比,如果nums[i] > nums[j],那么更新dp[i]

        · 基本——dp[j]:位置 j 处的最长递增子序列

        · 新增—— +1:算上nums[i],多了一个递增元素

        · 最后的递推公式:dp[i]取较大值:dp[i] = std::max(dp[i], dp[j] + 1)

4、遍历顺序:从前向后遍历

int lengthOfLIS(vector<int>& nums) {// dp[i]表示以nums[i]为最后一个元素的最长递增子序列长度// 全部初始化为1(子序列最少也有自身一个)vector<int> dp(nums.size(), 1);int ans = 1;for (int i = 1; i < nums.size(); ++i) {// 与i之前的所有元素做比较for (int j = 0; j < i; ++j) {// 不断更新dp[i],寻找以nums[i]为最后一个元素的最长递增子序列长度if (nums[i] > nums[j])dp[i] = std::max(dp[i], dp[j] + 1);}// 记录过程中的最长子序列if (dp[i] > ans)ans = dp[i];}return ans;
}

 674.最长连续递增序列

 整体和上一题差不多,但由于要求是“连续”子序列,所以简单不少。主要差别在遍历过程中,为了保持序列连续,只需要与前一个元素对比即可(上一题需要与前面所有元素对比)。

int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int ans = 1;for (int i = 1; i < nums.size(); ++i) {// 只需要与 i - 1 比较if (nums[i] > nums[i - 1]) {dp[i] = dp[i - 1] + 1;ans = std::max(ans, dp[i]);}}return ans;
}// 压缩空间写法
iint findLengthOfLCIS(vector<int>& nums) {int dp = 1;int ans = 1;for (int i = 1; i < nums.size(); ++i) {if (nums[i] > nums[i - 1])ans = std::max(ans, ++dp);elsedp = 1;}return ans;
}

718.最长重复子数组

写暴力超时了,剪剪枝可能有机会过?

int findLength0(vector<int>& nums1, vector<int>& nums2) {// 尝试用哈希表来加快索引// key:值// value:出现值的下标unordered_map<int, vector<int>> mapNum2;for (int i = 0; i < nums2.size(); ++i) {auto it = mapNum2.find(nums2[i]);if (it == mapNum2.end())mapNum2.insert({ nums2[i], {i} });elseit->second.push_back(i);}vector<int> dp(nums1.size(), 0);int ans = 0;// 暴力两层循环 + 最内层判断重复子序列长度for (int i = 0; i < nums1.size(); ++i) {auto it = mapNum2.find(nums1[i]);if (it == mapNum2.end())continue;ans = std::max(ans, 1);for (int k : it->second) {int len = 1;for (int j = 1; i + j < nums1.size() && k + j < nums2.size(); ++j) {if (nums1[i + j] == nums2[k + j]) {dp[i + j] = std::max(dp[i + j], ++len);ans = std::max(ans, dp[i + j]);}elsebreak;}}}return ans;
}

动规写法:

这题重点也是DP数组的定义:两个序列所以DP数组用二维

1、DP数组定义:两个维度表示两个数组的索引,dp[i][j]表示以nums1[i - 1]nums2[j - 1]为结尾的两个字符串的最长重复子数组长度

        (子序列问题一般都定义为 i - 1j - 1,目的是精简初始化的步骤)

2、DP数组初始化:首行与首列元素无意义,但为了递推公式将其初始化为0,其余元素随意

3、递推公式:如果nums1[i - 1] == nums2[j - 1],那么dp[i][j] = dp[i - 1][j - 1] + 1

        · 基本——dp[i - 1][j - 1]:以nums1[i - 2]和nums2[j - 1]为结尾的两个字符串的最长重复子数组长度

        · 新增—— +1:加上新的这对匹配元素

        · 最后的递推公式:dp[i] = std::max(dp[i], dp[j] + 1)

4、遍历顺序:从上到下从左到右遍历,先遍历nums1或nums2都可以

int findLength(vector<int>& nums1, vector<int>& nums2) {// dp[i][j]表示以nums1[i - 1]和nums2[j - 1]为结尾的两个字符串的最长重复子数组长度// 首行与首列元素无意义,为了递推公式将其初始化为0vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int ans = 0;for (int i = 1; i <= nums1.size(); ++i) {for (int j = 1; j <= nums2.size(); ++j) {if (nums1[i - 1] == nums2[j - 1]) {// dp[i][j]的值由dp[i - 1][j - 1]递推得到dp[i][j] = dp[i - 1][j - 1] + 1;ans = std::max(ans, dp[i][j]);}}}return ans;
}

这篇关于代码随想录算法训练营Day52 | 300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782465

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav