从零开始在kitti数据集上训练yolov5

2024-03-06 12:20

本文主要是介绍从零开始在kitti数据集上训练yolov5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.准备工作

0.1 在kitti官网下载kitti数据集

KITTI官网:https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
只需要下载图片和标签
在这里插入图片描述
解压后应该有一个training和和testing文件夹,training文件夹下应该有一个image_2文件夹和一个label_2文件夹,分别对应训练集的图片和标签,图片和标签的名称是一一对应的,因此我们拿这部分图片和标签进行训练。

0.2 clone yolov5代码

Github官网:https://github.com/ultralytics/yolov5

git clone https://github.com/ultralytics/yolov5.git
conda create -n yolov5 python=3.8 -y
conda activate yolov5
cd yolov5
pip install -r requirements.txt

1.转换kitti数据集标签格式

在这里插入图片描述

1.1 kitti数据集标签

首先看kitti数据集的标签,每一行有15个属性:他们的含义如下:

  • [0] 目标类比别(type),共有8种类别,分别是CarVanTruckPedestrianPerson_sittingCyclistTramMiscDontCare。DontCare表示某些区域是有目标的,但是由于一些原因没有做标注,比如距离激光雷达过远。但实际算法可能会检测到该目标,但没有标注,这样会被当作false positive (FP)。这是不合理的。用DontCare标注后,评估时将会自动忽略这个区域的预测结果,相当于没有检测到目标,这样就不会增加FP的数量了。此外,在 2D 与 3D Detection Benchmark 中只针对 Car、Pedestrain、Cyclist 这三类。
  • [1] 截断程度(truncated),表示处于边缘目标的截断程度,取值范围为0~1,0表示没有截断,取值越大表示截断程度越大。处于边缘的目标可能只有部分出现在视野当中,这种情况被称为截断。
  • [2] 遮挡程度(occlude),取值为(0,1,2,3)。0表示完全可见,1表示小部分遮挡,2表示大部分遮挡,3表示未知(遮挡过大)。
  • [3] 观测角度(alpha),取值范围为(-pi, pi)。是在相机坐标系下,以相机原点为中心,相机原点到物体中心的连线为半径,将物体绕相机y轴旋转至相机z轴,此时物体方向与相机x轴的夹角。这相当于将物体中心旋转到正前方后,计算其与车身方向的夹角。
  • [4-7] 二维检测框(bbox),目标二维矩形框坐标,分别对应left、top、right、bottom,即左上(xy)和右下的坐标(xy)。
  • [8-10] 三维物体的尺寸(dimensions),分别对应高度、宽度、长度,以米为单位。
  • [11-13] 中心坐标(location),三维物体底部中心在相机坐标系下的位置坐标(x,y,z),单位为米。
  • [14] 旋转角(rotation_y),取值范围为(-pi, pi)。表示车体朝向,绕相机坐标系y轴的弧度值,即物体前进方向与相机坐标系x轴的夹角。rolation_y与alpha的关系为alpha=rotation_y - theta,theta为物体中心与车体前进方向上的夹角。alpha的效果是从正前方看目标行驶方向与车身方向的夹角,如果物体不在正前方,那么旋转物体或者坐标系使得能从正前方看到目标,旋转的角度为theta。

参考链接:https://blog.csdn.net/u011489887/article/details/126316851

我们需要的是目标类别和2d检测框。

1.2 yolo需要的标签(coco数据集格式)

在这里插入图片描述
包含5个属性

  • [0] 目标类别索引(因此一会还需要一个类别和索引对应表)
  • [1-2] 中心点坐标,x_center,y_center
  • [3-4] 检测框宽、高,width,height

需要注意的是:这里的方框坐标和宽高需要归一化,即需要除以图像的宽高,如图所示
在这里插入图片描述

1.3 转换代码

import glob
import random
import cv2
from tqdm import tqdmdic = {'Car': 0, 'Van': 1, 'Truck': 2, 'Tram': 3, 'Pedestrian': 4, 'Person_sitting': 4, 'Cyclist': 5, 'Misc': 6}def changeformat():img_path = 'PATH/TO/KITTI/training/image_2/*.png'      # 修改为自己的 KITTI数据集图像位置label_path = 'PATH/TO/KITTI/training/label_2/'         # 修改为自己的 KITTI数据集标签位置filename_list = glob.glob(img_path)save_path = 'PATH/TO/NEW/LABELS/'                      # 修改为自己的 标签另存的位置for img_name in tqdm(filename_list, desc='Processing'):image_name = img_name[-10: -4]   # 000000 图片的名字label_file = label_path + image_name + '.txt'     # 根据图像名称查找对应标签savelabel_path = save_path + image_name + '.txt'  # 标签另存的文件with open(label_file, 'r') as f:labels = f.readlines()img = cv2.imread(img_name)h, w, c = img.shapedw = 1.0 / wdh = 1.0 / h        # 方便一会归一化for label in labels:label = label.split(' ')classname = label[0]if classname not in dic: continue  # 我忽略了kitti数据集中的misc和dontcarex1, y1, x2, y2 = label[4: 8]x1 = eval(x1)y1 = eval(y1)x2 = eval(x2)y2 = eval(y2)# 归一化处理bx = (x1 + x2) / 2.0 * dwby = (y1 + y2) / 2.0 * dhbw = (x2 - x1) * dwbh = (y2 - y1) * dh# 这里定义数据保存的精度bx = round(bx, 6)by = round(by, 6)bw = round(bw, 6) bh = round(bh, 6)print('Done convert!')

2.划分数据集,准备训练

2.1 划分训练集和验证集

training文件夹共有7480张图片,按照训练集:验证集=8:2的比例进行划分。
代码如下:

def splitdataset():import randomrandom.seed(1234)label_path = 'PATH/TO/NEW/LABELS/'       # 这里修改为上一步保存的新标签的位置filename_list = glob.glob(label_path)num_file = len(filename_list)val = 0.2      # 验证集的比例try:val_file = open('PATH/TO/KITTI/val.txt', 'w', encoding='utf-8')    # 包含验证集的txt文件,修改为自己想要保存的位置train_file = open('PATH/TO/KITTI/train.txt', 'w', encoding='utf-8')  # 包含训练集的txt文件,修改为自己想要保存的位置for i in range(num_file):if random.random() < val:val_file.write(f'PATH/TO/KITTI/images/{i:06}.png\n')   # 修改为kitti数据集图片的位置,即txt文件里存的是图片的位置else:train_file.write(f'PATH/TO/KITTI/images/{i:06}.png\n')         finally:val_file.close()train_file.close()

2.2 准备配置文件

--datasets|--images          # 7480 images|--labels          # 7480 labels|--train.txt|--val.txt|--kitti.yaml|--yolov5s.yaml

修改coco.yaml文件为kitti.yaml

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── datasets
path: PATH/TO/KITTI/datasets     # 修改为包含图片和标签的父文件夹
train: train.txt # train images (relative to 'path') 
val: val.txt # val images (relative to 'path') nc: 7      # 修改为类别数量
# Classes
names:0: car1: van2: truck3: tram4: pedestrian5: cyclist6: misc

修改yolov5s.yaml文件,这里根据选用的模型修改对应的文件,只需要修改类别数即可。
在这里插入图片描述

3.clone代码,开始训练

根据选用的模型大小,在github下载对应的预训练权重。
然后开始训练,train.py的相关参数设置可以参考这篇文章https://blog.csdn.net/m0_56175815/article/details/131125861,以及官方网站https://docs.ultralytics.com/zh/yolov5/tutorials/tips_for_best_training_results/

主要需要设置的参数包括:cfg(上一步的kitti.yaml),data(上一步修改的yolov5.yaml),batch-size(-1表示自动计算batch,推荐使用),weights(预训练权重)
其余的是一些调参的超参数:epochs(训练周期),cos-lr(是否使用模拟余弦退火调整学习率),label-smoothing(标签平滑设置,一般取小于0.1的数)

python train.py --weights PATH/TO/pretrained_weight/yolov5s.pt \
--cfg PATH/TO/yolov5s.yaml \
--data PATH/TO/kitti.yaml \
--epochs 300 \
--batch-size -1 \
--name kitti \
--cos-lr \
--label-smoothing 0.05

训练完成后的结果如下:
在这里插入图片描述

这篇关于从零开始在kitti数据集上训练yolov5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780050

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模