从零开始在kitti数据集上训练yolov5

2024-03-06 12:20

本文主要是介绍从零开始在kitti数据集上训练yolov5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.准备工作

0.1 在kitti官网下载kitti数据集

KITTI官网:https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
只需要下载图片和标签
在这里插入图片描述
解压后应该有一个training和和testing文件夹,training文件夹下应该有一个image_2文件夹和一个label_2文件夹,分别对应训练集的图片和标签,图片和标签的名称是一一对应的,因此我们拿这部分图片和标签进行训练。

0.2 clone yolov5代码

Github官网:https://github.com/ultralytics/yolov5

git clone https://github.com/ultralytics/yolov5.git
conda create -n yolov5 python=3.8 -y
conda activate yolov5
cd yolov5
pip install -r requirements.txt

1.转换kitti数据集标签格式

在这里插入图片描述

1.1 kitti数据集标签

首先看kitti数据集的标签,每一行有15个属性:他们的含义如下:

  • [0] 目标类比别(type),共有8种类别,分别是CarVanTruckPedestrianPerson_sittingCyclistTramMiscDontCare。DontCare表示某些区域是有目标的,但是由于一些原因没有做标注,比如距离激光雷达过远。但实际算法可能会检测到该目标,但没有标注,这样会被当作false positive (FP)。这是不合理的。用DontCare标注后,评估时将会自动忽略这个区域的预测结果,相当于没有检测到目标,这样就不会增加FP的数量了。此外,在 2D 与 3D Detection Benchmark 中只针对 Car、Pedestrain、Cyclist 这三类。
  • [1] 截断程度(truncated),表示处于边缘目标的截断程度,取值范围为0~1,0表示没有截断,取值越大表示截断程度越大。处于边缘的目标可能只有部分出现在视野当中,这种情况被称为截断。
  • [2] 遮挡程度(occlude),取值为(0,1,2,3)。0表示完全可见,1表示小部分遮挡,2表示大部分遮挡,3表示未知(遮挡过大)。
  • [3] 观测角度(alpha),取值范围为(-pi, pi)。是在相机坐标系下,以相机原点为中心,相机原点到物体中心的连线为半径,将物体绕相机y轴旋转至相机z轴,此时物体方向与相机x轴的夹角。这相当于将物体中心旋转到正前方后,计算其与车身方向的夹角。
  • [4-7] 二维检测框(bbox),目标二维矩形框坐标,分别对应left、top、right、bottom,即左上(xy)和右下的坐标(xy)。
  • [8-10] 三维物体的尺寸(dimensions),分别对应高度、宽度、长度,以米为单位。
  • [11-13] 中心坐标(location),三维物体底部中心在相机坐标系下的位置坐标(x,y,z),单位为米。
  • [14] 旋转角(rotation_y),取值范围为(-pi, pi)。表示车体朝向,绕相机坐标系y轴的弧度值,即物体前进方向与相机坐标系x轴的夹角。rolation_y与alpha的关系为alpha=rotation_y - theta,theta为物体中心与车体前进方向上的夹角。alpha的效果是从正前方看目标行驶方向与车身方向的夹角,如果物体不在正前方,那么旋转物体或者坐标系使得能从正前方看到目标,旋转的角度为theta。

参考链接:https://blog.csdn.net/u011489887/article/details/126316851

我们需要的是目标类别和2d检测框。

1.2 yolo需要的标签(coco数据集格式)

在这里插入图片描述
包含5个属性

  • [0] 目标类别索引(因此一会还需要一个类别和索引对应表)
  • [1-2] 中心点坐标,x_center,y_center
  • [3-4] 检测框宽、高,width,height

需要注意的是:这里的方框坐标和宽高需要归一化,即需要除以图像的宽高,如图所示
在这里插入图片描述

1.3 转换代码

import glob
import random
import cv2
from tqdm import tqdmdic = {'Car': 0, 'Van': 1, 'Truck': 2, 'Tram': 3, 'Pedestrian': 4, 'Person_sitting': 4, 'Cyclist': 5, 'Misc': 6}def changeformat():img_path = 'PATH/TO/KITTI/training/image_2/*.png'      # 修改为自己的 KITTI数据集图像位置label_path = 'PATH/TO/KITTI/training/label_2/'         # 修改为自己的 KITTI数据集标签位置filename_list = glob.glob(img_path)save_path = 'PATH/TO/NEW/LABELS/'                      # 修改为自己的 标签另存的位置for img_name in tqdm(filename_list, desc='Processing'):image_name = img_name[-10: -4]   # 000000 图片的名字label_file = label_path + image_name + '.txt'     # 根据图像名称查找对应标签savelabel_path = save_path + image_name + '.txt'  # 标签另存的文件with open(label_file, 'r') as f:labels = f.readlines()img = cv2.imread(img_name)h, w, c = img.shapedw = 1.0 / wdh = 1.0 / h        # 方便一会归一化for label in labels:label = label.split(' ')classname = label[0]if classname not in dic: continue  # 我忽略了kitti数据集中的misc和dontcarex1, y1, x2, y2 = label[4: 8]x1 = eval(x1)y1 = eval(y1)x2 = eval(x2)y2 = eval(y2)# 归一化处理bx = (x1 + x2) / 2.0 * dwby = (y1 + y2) / 2.0 * dhbw = (x2 - x1) * dwbh = (y2 - y1) * dh# 这里定义数据保存的精度bx = round(bx, 6)by = round(by, 6)bw = round(bw, 6) bh = round(bh, 6)print('Done convert!')

2.划分数据集,准备训练

2.1 划分训练集和验证集

training文件夹共有7480张图片,按照训练集:验证集=8:2的比例进行划分。
代码如下:

def splitdataset():import randomrandom.seed(1234)label_path = 'PATH/TO/NEW/LABELS/'       # 这里修改为上一步保存的新标签的位置filename_list = glob.glob(label_path)num_file = len(filename_list)val = 0.2      # 验证集的比例try:val_file = open('PATH/TO/KITTI/val.txt', 'w', encoding='utf-8')    # 包含验证集的txt文件,修改为自己想要保存的位置train_file = open('PATH/TO/KITTI/train.txt', 'w', encoding='utf-8')  # 包含训练集的txt文件,修改为自己想要保存的位置for i in range(num_file):if random.random() < val:val_file.write(f'PATH/TO/KITTI/images/{i:06}.png\n')   # 修改为kitti数据集图片的位置,即txt文件里存的是图片的位置else:train_file.write(f'PATH/TO/KITTI/images/{i:06}.png\n')         finally:val_file.close()train_file.close()

2.2 准备配置文件

--datasets|--images          # 7480 images|--labels          # 7480 labels|--train.txt|--val.txt|--kitti.yaml|--yolov5s.yaml

修改coco.yaml文件为kitti.yaml

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── datasets
path: PATH/TO/KITTI/datasets     # 修改为包含图片和标签的父文件夹
train: train.txt # train images (relative to 'path') 
val: val.txt # val images (relative to 'path') nc: 7      # 修改为类别数量
# Classes
names:0: car1: van2: truck3: tram4: pedestrian5: cyclist6: misc

修改yolov5s.yaml文件,这里根据选用的模型修改对应的文件,只需要修改类别数即可。
在这里插入图片描述

3.clone代码,开始训练

根据选用的模型大小,在github下载对应的预训练权重。
然后开始训练,train.py的相关参数设置可以参考这篇文章https://blog.csdn.net/m0_56175815/article/details/131125861,以及官方网站https://docs.ultralytics.com/zh/yolov5/tutorials/tips_for_best_training_results/

主要需要设置的参数包括:cfg(上一步的kitti.yaml),data(上一步修改的yolov5.yaml),batch-size(-1表示自动计算batch,推荐使用),weights(预训练权重)
其余的是一些调参的超参数:epochs(训练周期),cos-lr(是否使用模拟余弦退火调整学习率),label-smoothing(标签平滑设置,一般取小于0.1的数)

python train.py --weights PATH/TO/pretrained_weight/yolov5s.pt \
--cfg PATH/TO/yolov5s.yaml \
--data PATH/TO/kitti.yaml \
--epochs 300 \
--batch-size -1 \
--name kitti \
--cos-lr \
--label-smoothing 0.05

训练完成后的结果如下:
在这里插入图片描述

这篇关于从零开始在kitti数据集上训练yolov5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780050

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,