oneAPI 数学核心函数库 (oneMKL):加速数学处理例程 提高应用程序性能 缩短开发时间

本文主要是介绍oneAPI 数学核心函数库 (oneMKL):加速数学处理例程 提高应用程序性能 缩短开发时间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 在 CPU 和 GPU 上进行数值计算的高性能
  • 为什么选择oneMKL?
  • 最新消息
  • 所需条件
  • 特征
    • 线性代数
    • 稀疏线性代数函数
    • 快速傅里叶变换 (FFT)
    • 随机数生成器函数 (RNG)
    • 数据拟合
    • 矢量数学
    • 汇总统计

英特尔® oneAPI 数学核心函数库 (oneMKL)可以加速数学处理例程,提高应用程序性能,并缩短开发时间。

在 CPU 和 GPU 上进行数值计算的高性能

快速、高效、易于使用的数学库
针对 Intel® CPU、GPU 和其他加速器进行了优化
多功能、强大的功能,用于:密集线性代数稀疏线性代数快速傅里叶变换 (FFT)矢量数学 (VM)随机数生成器 (RNG)汇总统计

为什么选择oneMKL?

适用于基于英特尔®的系统的最快和最常用的数学库。†
更快地创建高性能应用程序。
充分利用面向 AI、HPC 和数据科学的英特尔硬件功能。
从以前的解决方案(英特尔® MKL)无缝升级。
使用 NumPy、SciPy、MATLAB* 等数学解决方案实现高性能。
对 BLAS、LAPACK 和 FFTW 的全面标准接口支持。

最新消息

对 SYCL* 的 oneMKL 库进行了分区,以便为 oneMKL 的开发人员和用户提供更小的二进制占用空间
提高了英特尔 CPU 和 GPU 上的 CUDA* 库函数 API 兼容性覆盖率
提供针对英特尔®至强® CPU Max 系列和英特尔®数据中心 GPU Max 系列优化的高性能 LINPACK (HPL) 和 HPL-AI 基准测试
BLAS的
改进了英特尔数据中心 GPU Max 系列上 GEMV 和多个 BLAS 1 级例程的一般性能
DFT型
在英特尔数据中心 GPU Max 系列上支持大于 4 GiB(高达 64 GiB 数据)的 FFT
改进了英特尔数据中心 GPU Max 系列的 FFT 性能
拉包
引入 SYCL API,用于计算具有 C 和 Fortran OpenMP* 卸载支持的非枢轴 LU 分解
引入 SYCL API 来计算一组通用矩阵的批处理矩阵逆
矢量数学
将矢量数学优化集成到随机数生成器中,以实现高性能计算
支持 Intel GPU 上 FP16 数据类型的矢量数学运算
添加了 OpenMP 5.1 以支持 C 卸载

所需条件

首先为您的应用程序选择最佳接口:
C 接口
Fortran 接口
SYCL 接口

oneMKL 作为英特尔® oneAPI Base Toolkit 的一部分提供。
将 oneMKL 与英特尔® MPI 库或英特尔® Fortran 编译器结合使用需要英特尔® HPC 工具包。
在这里插入图片描述

特征

线性代数

使用对向量和矩阵进行操作的低级例程加速线性代数计算,并与以下行业标准的 BLAS 和 LAPACK 操作兼容:

第 1 级:向量-向量操作
第 2 级:矩阵向量运算
第 3 级:矩阵-矩阵运算

稀疏线性代数函数

使用低级和 inspector-executor 例程对稀疏矩阵执行各种操作,包括:

将稀疏矩阵与密集向量相乘
将稀疏矩阵乘以密集矩阵
使用三角稀疏矩阵求解线性系统
使用一般稀疏矩阵求解线性系统

快速傅里叶变换 (FFT)

将信号从其原始域(通常是时间或空间)转换为频域中的表示并返回。在一维、二维或三维中使用 FFT 函数,并支持混合 radice。支持的功能包括单精度和双精度任意长度的复数到复数和实数到复数的变换。

随机数生成器函数 (RNG)

使用常见的伪随机、准随机和非确定性随机数引擎来求解连续分布和离散分布。

数据拟合

提供基于样条的插值功能,可用于近似函数、函数导数或积分,以及执行单元格搜索操作。

矢量数学

通过基于矢量的基本函数平衡精度和性能。使用传统的代数和三角函数操作值。

汇总统计

计算单精度和双精度多维数据集的基本统计估计值(例如原始或中心总和矩)。

这篇关于oneAPI 数学核心函数库 (oneMKL):加速数学处理例程 提高应用程序性能 缩短开发时间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779877

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark