【强化学习的数学原理-赵世钰】课程笔记(七)时序差分方法

本文主要是介绍【强化学习的数学原理-赵世钰】课程笔记(七)时序差分方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.内容概述

  • 第五节课蒙特卡洛(Mento Carlo)方法是全课程中第一次介绍 model-free 的方法,本节课的 Temporal-difference learning(TD learning)是我们要介绍的第二种 model-free 的方法。
  • 基于蒙特卡洛(Mento Carlo)的方法是一种非递增(non-incremental)的方法,Temporal-difference learning(TD learning)是一种迭代式(incremental)的方法
  • 第六节课的内容是本节课的铺垫
  • 下节课会介绍 value function approximation 的方法,这个是基于现在我们要介绍的 TD 算法,不过这节课介绍的是基于 table 的(tabular representation),下节课会介绍基于 function 的 representation。非常经典的 deep Q learning 也会在下节课介绍。

本节课内容:

  • 激励性实例(Motivating examples)
  • 估计 state value 的 TD 算法:(在第四章我们使用模型计算 state value(做 state value estimation),在第五章使用蒙特卡洛计算 state value(做 state value estimation),在这章使用时序差分计算 state value(做 state value estimation),所以它们都是在做类似的事情,但是用的方法不一样。)
  • 估计 action value 的 TD 算法:(Sarsa 算法):使用 TD 的思想来学习 action value,然后得到 action value 可以以此为据去更新策略,得到一个新的策略再计算它的 action value,这样不断循环下去就能够不断改进策略,直到最后找到最优的策略。
  • 估计 action value 的 TD 算法:expected Sarsa (Sarsa 算法的变形)
  • 估计 action value 的 TD 算法:n-step Sarsa (Sarsa 算法的变形)
  • 估计最优 action value 的 TD 算法:Q-learning:直接计算 optimal action value,所以他是一个 off-policy 的算法。这就涉及到了 on-policy 和 off-policy 两个概念,在强化学习中有两个策略,一个是 behavior policy,它是用来生成经验数据的,一个是 target policy,这是我们的目标策略,我们不断改进希望这个 target policy 能够收敛到最优的策略。如果 behavior policy 和 target policy 这两个是相同的,那么它就是 on-policy,如果它们可以不同,那这个算法就是 off-policy。off-policy 的好处是,我可以用之前的别的策略所生成的数据为我所用,我可以拿过来进行学习然后得到最优的策略。
  • 一个统一的观点:将这些算法进行比较
  • 总结

一.激励性实例(Motivating examples)-随机问题(stochastic problems)

下面讲几个例子,讲这个例子的目的是为了建立起上节课和这节课的关系

接下来,我们将考虑一些随机问题(stochastic problems),并展示如何使用 RM 算法来解决这些问题


首先,考虑简单的均值估计问题(mean estimation problem):(之前的课程都在反复讲这个问题,我们会从不同角度介绍这个问题):mean estimation 问就是要求解一个 random variable X 的 expectation,用 w 来表示这样一个 expectation 的值,现在有的是 X 的独立同分布(iid)采样,用这些采样求 expectation。这个问题有很多算法可以求解,这里讲解 RM 算法

  • 要求解 w,先把它写成一个函数 g(w)=w-E[X],求解 g(w)=0 的方程,这个方程求解出来自然可以得到它的解 w*=E[X]
  • 因为我们只能获得 X 的采样 {x},w - x 是 g 的测量 g~

  • 这么看的话\alpha_k的取值也是权衡历史值和当前采样,所以也有一种“记忆”的味道在里面 
  • 每次考虑了期望值和结果采样值的差距进行考虑

第二,考虑一个稍微复杂一点的例子:


第三,考虑一个更复杂的例子:

下面这个式子的变量符号都是有目的使用的,R代表 reward,γ 代表 discounted rate,v 就是 state value,X 就是对应 state value 的 state。

  • 这样就可以求出来 action value 了
  • 可以model-free的方式求action value的期望!


快速总结:

  • 上述三个例子越来越复杂。
  • 它们都可以用 RM 算法求解。
  • 我们将看到 TD 算法也有类似的表达式。

二.估计 state value 的 TD 算法(TD learning of state values)

先学习如何用 TD 算法求解一个给定的策略 π 的 state value,之所以求解 state value,是因为求解出来了 state value 就相当于作了 policy evaluation,之后和 policy improvement 相结合,就可以去找最优的策略

请注意

  • TD 学习算法通常指的是一大类 RL 算法。今天这节课讲的所有的算法都是 TD 算法,包括 Q learning
  • TD 学习算法也指下面即将介绍的一种用于估计状态值(state value)的特定算法,下面即将讲的 TD 算法是最经典的 TD 算法,就是来估计 state value 的,有一个非常明确的表达式,这时候它是指一个特定的算法。

算法所需的数据/经验:TD 算法是基于数据,不基于模型实现强化学习的,算法使用的数据/经验(data/experience)如下:

  • 之前不理解为什么v_t(s_t)不写成v_k(s_t),原来一组{s_t,r_t+1,s_t+1}刚好用来更新一次v,所以两个不同意义的下标k和t其实是同步的。 

下面 TD 算法就是要用这些数据来估计 π 对应的 state value,下面正式的给出 TD 算法,包含两个式子: 

  • 最下面两点的翻译:1)在时间t,只有访问状态st的值被更新,而未访问状态s≠st的值保持不变;2)当上下文清楚时,将省略公式(2)中的更新
  • 实际上我们平时看 TD 算法的时候,看不到第二个式子,因为第二个式子隐含掉了,虽然忽略掉了,但是从数学上来讲,是有这样一个式子存在的

下面详细介绍第一个式子:

下面详细介绍上面式子中的两项:

为啥v的下标不用k呢?v下标里的t和s的下标不是同一个t吧

  •  针对某一组数据的吧,同一时刻只能访问一个状态,所以下标一样
  • 这里的t是指的某一时刻的各个变量的值,t+1就代表下一个时刻的值,即我们更新之后的值,没什么问题啊
  • v的脚标t代表迭代,s的脚标t代表位置
  • 是把时间步当成迭代步
  • 是同一个t,表示t时刻所在的状态

s 的下标和v的下标都是用t表示,但是意义不同吧?v的下标t表示时间,s的下标表示第t个状态

  • 我感觉都是表示时间,st+1和st可能根本就不是同一个状态
  • 我个人认为在t时刻,v迭代到了第t次,visit的状态s也达到了第t个
  • 感觉两个t是一样的,因为s每变一步,只更新一次v

 误差期望为啥是0呢

  • 因为这就是自己减自己,贝尔曼公式嘛

V pi 是最优价值吗?

  • v_pi 是在给定策略pi下的state value. 定义记不清可以复习第二课
  • v_pi是对当前策略pi的评估,用来改进策略 

TD误差(TD error)可以解释为创新(innovation),当前我对 vπ 有一个估计,这个估计可能是不准确的,然后来了一个新的数据/经验(data/experience),然后把这个数据/经验(data/experience)和我的估计联系到一起,就计算出来了 error,这个 error 的存在说明当前的估计是不准确的,可以用这个 error 来改进我当前的估计,这意味着新的从经验中获得的信息(st, rt+1, st+1)。


下面介绍 TD 算法的一些其他性质:

  • (3)中的TD算法仅估计给定的一个策略的状态值(state value),所以刚才介绍的 TD  算法只是估计 state value,只是来做 policy evaluation 这样的事情。
  • 它不估计动作值(action value)。
  • 它不寻求最优策略(optimal policies)。
  • 稍后,马上会介绍一系列 TD 算法,他们能够估计 action value,并且和 policy improvement 的步骤结合,就能搜索最优策略。
  • 尽管如此,(3)中的TD算法是理解的基础核心思想。

问:这种 TD 算法在数学上有什么作用?
答:它求解给定策略 π 的贝尔曼方程。

在介绍贝尔曼公式的时候我们已经给出了算法,给出了 closed-form solution 和 iterative solution,在那时候介绍的算法是依赖于模型的,现在是没有模型的。

因此,TD 算法是在没有模型的情况下求解贝尔曼公式。下面要做的就是证明这句话:

首先,引入一个新的贝尔曼公式

TD 算法从本质上讲是求解公式(5)这样一个 equation


第二,使用 RM 算法求解公式(5)这样的贝尔曼公式。之后我们会看到,推导出的 RM 算法与刚才介绍的 TD 算法非常类似,通过这个可以知道,TD 算法就是求解贝尔曼公式的一个 RM 算法


因此,求解贝尔曼公式(5)的 RM 算法是公式(6):

(6) 中的 RM 算法有两个假设值得特别注意。这个式子和刚才我们介绍的 TD 算法非常类似,但是有两个小的不同点:

  • 在这个公式中我们要反复得到 r 和 s' 的采样,当前时刻从 s 出发跳到 s',下一时刻还得从 s 出发跳到 s',要反复采样。这个和 TD 算法中使用 episode 这种时序的顺序的访问是不一样的
  • 上面式子用蓝色标记出来了,在计算 v_k+1 的时候,要用到 v_π(sk'),也就是 sk' 真实的状态值 v_π,但是 v_π 是不知道的。

下面解决这两个不同点:

为了消除 RM 算法中的两个假设,我们可以对其进行修改。

  • 要解决第一个问题就是要把一组采样 {(s, r, s')} 替换成一组序列  {(st, rt+1, st+1)} ,简而言之就是不是从 s 出发得到 r 然后得到 s',然后再从 s 出发得到 r 然后得到 s',而是得到一个 trajectory,如果这个 trajectory 恰巧访问到了 s,就去更新一下 s,如果不访问到 s,那么 s 对应的估计值就保持不动,这样就可以用一个序列对所有 s 的 v 都进行更新。
  • 另一个修改是,因为我们事先不知道 v_π(s'),这是我们要求的,可以把这个 v_π(s')  替换成 v_k(s_k'),也就是替换成 s' 这个状态它的估计值 vk。即用对它的估计值来代替 v_π(s')。(问题:在 v_π 的时候能够收敛,现在给了一个 v_k 是不准确的,还能确保收敛吗?答案是肯定的)

以上是用 RM 算法求解贝尔曼公式的一个思路,当然这个思路相对直观一些,下面会给出它的严格收敛性的分析


TD 算法严格的收敛结果是下面一个定理:

强调:

  • 这个定理说的是,状态值 state value v_t(s) 会收敛到真实的状态值 v_t(s),所以 TD 算法本质上还是在做一个 policy evaluation 的事情,而且是针对给定的一个策略 π。(该定理说明,对于给定的策略 π,TD 算法可以找到策略 π 的状态值)。那么我们怎么样去改进这个策略找到最优的策略呢,因为强化学习的最终目的是找到最优策略,之后我们会介绍,我们需要把 policy evaluation 和 policy improvement 两个相结合才可以)
  • 对任意一个 s,它的和 αt(s) 都应该趋于无穷,即每个状态 s 都应该被访问很多次。当每一个状态被访问的时候对应的 αt(s) 就是一个正数,当当前的 trajectory 是访问其他的状态,那么这个状态没被访问的时候对应的 αt(s) 就是 0,所以 αt(s) 求和等于无穷意味着它实际上被访问了很多次
  • 学习率 α 通常被选为一个小常数。在这种情况下,条件 (α 2 t (s) < ∞ 看图片)已经失效,即这个条件不成立,但是在实际当中为什么这么做呢,因为实际中是比较复杂的,我们希望很久之后我所得到的这些经验仍然能够派上用场,相反如果 αt 最后趋向于 0 了,那很久之后的经验就没用了,所以我们只是把它设置成一个很小的数,但是不让它收敛到完全是 0。当 α 为常数时,仍然可以证明算法在期望意义上收敛。

这篇关于【强化学习的数学原理-赵世钰】课程笔记(七)时序差分方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779329

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

python忽略warnings的几种方法

《python忽略warnings的几种方法》本文主要介绍了几种在Python忽略警告信息的方法,,可以使用Python内置的警告控制机制来抑制特定类型的警告,下面就来介绍一下,感兴趣的可以了解一下... 目录方法 1: 使用 warnings 模块过滤特定类型和消息内容的警告方法 2: 使用 warnin