【大数据】Apache Iceberg 概述和源代码的构建

2024-03-04 13:50

本文主要是介绍【大数据】Apache Iceberg 概述和源代码的构建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Iceberg 概述和源代码的构建

  • 1.数据湖的解决方案 - Iceberg
    • 1.1 Iceberg 是什么
    • 1.2 Iceberg 的 Table Format 介绍
    • 1.3 Iceberg 的核心思想
    • 1.4 Iceberg 的元数据管理
    • 1.5 Iceberg 的重要特性
      • 1.5.1 丰富的计算引擎
      • 1.5.2 灵活的文件组织形式
      • 1.5.3 优化数据入湖流程
      • 1.5.4 增量读取处理能力
    • 1.6 数据文件结构
      • 1.6.1 元数据文件
        • 1.6.1.1 Table Metadata
        • 1.6.1.2 快照(Snapshot)
        • 1.6.1.3 清单文件(Manifest File)
      • 1.6.2 数据文件
  • 2.Apache Iceberg 的实现细节
    • 2.1 快照设计方式
      • 2.1.1 快照隔离
      • 2.1.2 增量读取数据
      • 2.1.3 原子性操作
    • 2.2 事务性提交
      • 2.2.1 写操作要求
      • 2.2.2 冲突解决 - 乐观锁
  • 3.Iceberg 结合 Flink 场景分享
    • 3.1 构建近实时 Data Pipeline
    • 3.2 CDC 数据实时摄入摄出
    • 3.3 从 Iceberg 历史数据启动 Flink 任务
    • 3.4 通过 Iceberg 数据来修正实时聚合结果
  • 4.Iceberg 0.11.1 源代码编译
    • 4.1 编译 Iceberg
      • 4.1.1 下载 Iceberg 0.11.1 软件包
      • 4.1.2 解压 Iceberg 0.11.1 软件包
      • 4.1.3 修改对应的版本
      • 4.1.4 编辑 build.gradle 文件,添加国内源
      • 4.1.5 下载依赖(可选)
      • 4.1.6 正式编译
      • 4.1.7 生成的目录
    • 4.2 Iceberg 环境部署
  • 5.总结

我们在使用不同的引擎进行大数据计算时,需要将数据根据计算引擎进行适配。这是一个相当棘手的问题,为此出现了一种新的解决方案:介于上层计算引擎和底层存储格式之间的一个中间层。这个中间层不是数据存储的方式,只是定义了数据的元数据组织方式,并向计算引擎提供统一的类似传统数据库中 “表” 的语义。它的底层仍然是 Parquet、ORC 等存储格式。

基于此,Netflix 开发了 Iceberg,目前已经是 Apache 的顶级项目,https://iceberg.apache.org/。

1.数据湖的解决方案 - Iceberg

1.1 Iceberg 是什么

Apache Iceberg is an open table format for huge analytic datasets. Iceberg adds tables to compute engines including Flink Trino Spark and Hive using a high-performance table format that works just like a SQL table.

Iceberg 是一种开放的数据湖表格式。可以简单理解为是基于计算层(Flink、Spark)和存储层(ORC,Parquet,Avro)的一个中间层,用 Flink 或者 Spark 将数据写入 Iceberg,然后再通过其他方式来读取这个表,比如 Spark,Flink,Presto 等。

在这里插入图片描述
在文件 Format(Parquet / Avro / ORC 等)之上实现 Table 语义:

  • 支持定义和变更 Schema
  • 支持 Hidden Partition 和 Partition 变更
  • ACID 语义
  • 历史版本回溯
  • 借助 Partition 和 Columns 统计信息实现分区裁剪
  • 不绑定任何存储引擎,可拓展到 HDFS / S3 / OSS
  • 容许多个 writer 并发写入,乐观锁机制解决冲突

1.2 Iceberg 的 Table Format 介绍

Iceberg 是为分析海量数据而设计的,被定义为 Table Format,Table Format 介于计算层和存储层之间。

Table Format 向下管理在存储系统上的文件,向上为计算层提供丰富的接口。存储系统上的文件存储都会采用一定的组织形式,譬如读一张 Hive 表的时候,HDFS 文件系统会带一些 Partition、数据存储格式、数据压缩格式、数据存储 HDFS 目录的信息等,这些信息都存在 Metastore 上,Metastore 就可以称之为一种文件组织格式。

一个优秀的 文件组织格式,如 Iceberg,可以更高效的支持上层的计算层访问磁盘上的文件,做一些 listrename 或者查找等操作。

表和表格式是两个概念。表是一个具象的概念,应用层面的概念,我们天天说的表是简单的行和列的组合。而 表格式 是数据库系统实现层面一个抽象的概念,它定义了一个表的 Scheme 定义:包含哪些字段,表下面文件的组织形式(Partition 方式)、元数据信息(表相关的统计信息,表索引信息以及表的读写 API),如下图左侧所示:

在这里插入图片描述
上图右侧是 Iceberg 在数据仓库生态中的位置,和它差不多相当的一个组件是 Metastore。不过 Metastore 是一个服务,而 Iceberg 就是一系列 jar 包。对于 Table Format,我认为主要包含 4 4 4 个层面的含义,分别是 表 Schema 定义(是否支持复杂数据类型),表中文件的组织形式表相关统计信息表索引信息以及表的读写 API 信息

  • 表 Schema 定义了一个表支持字段类型,比如 intstringlong 以及复杂数据类型等。
  • 表中文件组织形式最典型的是 Partition 模式,是 Range Partition 还是 Hash Partition。
  • Metadata 数据统计信息。
  • 表的读写 API。上层引擎通过对应的 API 读取或者写入表中的数据。

1.3 Iceberg 的核心思想

在这里插入图片描述

Iceberg 的核心思想,就是 在时间轴上跟踪表的所有变化

  • 快照 表示表数据文件的一个完整集合。
  • 每次更新操作会生成一个新的快照。

1.4 Iceberg 的元数据管理

在这里插入图片描述
从图中可以看到 Iceberg 将数据进行分层管理,主要分为 元数据管理层数据存储层。元数据管理层又可以细分为三层:

  • Metadata File
  • Snapshot
  • Manifest

Metadata File 存储当前版本的元数据信息(所有 Snapshot 信息);Snapshot 表示当前操作的一个快照,每次 commit 都会生成一个快照,一个快照中包含多个 Manifest。每个 Manifest 中记录了当前操作生成数据所对应的文件地址,也就是 data files 的地址。基于 Snapshot 的管理方式,Iceberg 能够进行 time travel(历史版本读取以及增量读取),并且提供了 serializable isolation

数据存储层支持不同的文件格式,目前支持 Parquet、ORC、AVRO。

1.5 Iceberg 的重要特性

Apache Iceberg 设计初衷是 为了解决 Hive 离线数仓计算慢的问题,经过多年迭代已经发展成为构建数据湖服务的表格式标准。关于 Apache Iceberg 的更多介绍,请参见 Apache Iceberg 官网。

目前 Iceberg 提供以下核心能力:

在这里插入图片描述

1.5.1 丰富的计算引擎

  • 优秀的内核抽象使之不绑定特定引擎,目前在支持的有 Spark、Flink、Presto、Hive。
  • Iceberg 提供了 Java Native API,不用特定引擎也可以访问 Iceberg 表。

1.5.2 灵活的文件组织形式

  • 提供了 基于流式的增量计算模型基于批处理的全量表计算模型,批任务和流任务可以使用相同的存储模型(HDFS、OZONE),数据不再孤立,以构建低成本的轻量级数据湖存储服务。
  • Iceberg 支持隐藏分区(Hidden Partitioning)和分区布局变更(Partition Evolution),方便业务进行数据分区策略更新。
  • 支持 Parquet、ORC、Avro 等存储格式。

1.5.3 优化数据入湖流程

  • Iceberg 提供 ACID 事务能力,上游数据写入即可见,不影响当前数据处理任务,这大大简化了 ETL。
  • Iceberg 提供 Upsert / Merge Into 行级别数据变更,可以极大地缩小数据入库延迟。

1.5.4 增量读取处理能力

  • Iceberg 支持通过流式方式读取增量数据,实现主流开源计算引擎入湖和分析场景的完善对接。
  • 支持 Spark Structed Streaming。
  • 支持 Flink Table Source。
  • 支持历史版本回溯。

1.6 数据文件结构

我们先了解一下 Iceberg 在文件系统中的布局,总体来讲 Iceberg 分为两部分数据。

  • 第一部分是 数据文件,如下图中的 .parquet 文件。
  • 第二部分是 表元数据文件(Metadata 文件),包含 Snapshot 文件(snap-*.avro)、Manifest 文件(.avro)、TableMetadata 文件(*.json)等。

在这里插入图片描述

1.6.1 元数据文件

其中 Metadata 目录存放元数据管理层的数据,表的元数据是不可修改的,并且始终向前迭代;当前的快照可以回退。

1.6.1.1 Table Metadata

version[number].metadata.json:存储每个版本的数据更改项。

1.6.1.2 快照(Snapshot)

snap-[snapshotID]-[attemptID]-[commitUUID].avro:存储快照 Snapshot 文件。

快照代表一张 Iceberg 表在某一时刻的状态,也被称为 清单列表Manifest List),里面存储的是清单文件列表,每个清单文件占用一行数据。清单列表文件以 snap 开头,以 avro 后缀结尾,每次更新都产生一个清单列表文件。每行中存储了清单文件的路径。

清单文件(Manifest Files)里面存储数据文件的分区范围、增加了几个数据文件、删除了几个数据文件等信息。数据文件(Data Files)存储在不同的 Manifest Files 里面,Manifest Files 存储在一个 Manifest List 文件里面,而一个 Manifest List 文件代表一个快照。

1.6.1.3 清单文件(Manifest File)

[commitUUID]-[attemptID]-[manifestCount].avro:Manifest 文件。

清单文件是以 avro 格式进行存储的,以 avro 后缀结尾,每次更新操作都会产生多个清单文件。其里面列出了组成某个快照(Snapshot)的数据文件列表。每行都是每个数据文件的详细描述,包括 数据文件的状态文件路径分区信息列级别的统计信息(比如每列的最大最小值、空值数等)、文件的大小 以及 文件里面数据的行数 等信息。其中列级别的统计信息在 Scan 的时候可以为算子下推提供数据,以便可以过滤掉不必要的文件。

1.6.2 数据文件

data 目录组织形式类似于 Hive,都是以分区进行目录组织(图中 dt 为分区列)。

Iceberg 的数据文件通常存放在 data 目录下。一共有三种存储格式(Avro、ORC 和 Parquet),主要是看你选择哪种存储格式,后缀分别对应 avroorc 或者 parquet。在一个目录,通常会产生多个数据文件。

2.Apache Iceberg 的实现细节

2.1 快照设计方式

2.1.1 快照隔离

  • 读操作仅适用当前已生成快照。
  • 写操作会生成新的隔离快照,并在写完成后原子性提交。

如下图所示,虚线框(Snapshot-1)表示正在进行写操作,但是还没有发生 commit 操作,这时候 Snapshot-1 是不可读的,用户只能读取已经 commit 之后的 Snapshot。同理,Snapshot-2,Snapshot-3 表示已经可读。

在这里插入图片描述
可以支持并发读,例如可以同时读取 S1、S2、S3 的快照数据,同时,可以回溯到 Snapshot-2 或者 Snapshot-3。在 Snapshot-4 commit 完成之后,这时候 Snapshot-4 已经变成实线,就可以读取数据了。

例如,现在 Current Snapshot 的指针移到 S3,用户对一张表的读操作,都是读 Current Snapshot 指针所指向的 Snapshot,但不会影响前面的 Snapshot 的读操作。

当一切准备完毕之后,会以原子操作的方式 commit 这个 Metadata 文件,这样一次 Iceberg 的数据写入就完成了。随着每次的写入,Iceberg 就生成了下图这样的一个文件组织模式。

2.1.2 增量读取数据

Iceberg 的每个 Snapshot 都包含前一个 Snapshot 的所有数据,每次都相当于全量读取数据,对于整个链路来说,读取数据的代价是非常高的。

如果我们只想读取当前时刻的增量数据,就可以根据 Iceberg 中 Snapshot 的回溯机制来实现,仅读取 Snapshot-1 到 Snapshot-2 的增量数据,也就是下图中的紫色数据部分。

同理,S3 也可以只读取红色部分的增量数据,也可以读取 S1 - S3 的增量数据。

Iceberg 支持读写分离,也就是说可以支持并发读和增量读。

在这里插入图片描述

2.1.3 原子性操作

对于文件列表的所有修改都是原子操作。

  • 在分区中追加数据。
  • 合并或是重写分区。

在这里插入图片描述

  • Iceberg 是以 文件 为粒度提交事务的,所以就没有办法做到以秒为单位提交事务,否则会造成文件数据量膨胀。
  • 比如 Flink 是以 CheckPoint 为写入单位,物理数据在写入 Iceberg 之后并不能被直接查询,只有当触发了 CheckPoint 时才会写 Metadata,这时数据才会由不可见变成可见。而每次 CheckPoint 执行也需要一定的时间。

2.2 事务性提交

2.2.1 写操作要求

原子性替换保证了线性的历史。原子性替换需要依靠以下操作来保证:

  • 记录当前元数据的版本 base version
  • 创建新的元数据以及 Manifest 文件。
  • 原子性的将 base version 替换为新的版本。

2.2.2 冲突解决 - 乐观锁

  • 假定当前没有其他的写操作。
  • 遇到冲突则基于当前最新的元数据进行重试。
  • 元数据管理器所提供的能力。
  • HDFS 或是本地文件系统所提供的原子化的 rename 能力。

3.Iceberg 结合 Flink 场景分享

3.1 构建近实时 Data Pipeline

Iceberg 可以做到分钟级别的准实时数据拉取。


首先,Flink Iceberg 最经典的一个场景就是 构建实时的 Data Pipeline。业务端产生的大量日志数据,被导入到 Kafka 这样的消息队列。运用 Flink 流计算引擎执行 ETL 后,导入到 Apache Iceberg 原始表中。有一些业务场景需要直接跑分析作业来分析原始表的数据,而另外一些业务需要对数据做进一步的提纯。那么我们可以再新起一个 Flink 作业从 Apache Iceberg 表中消费增量数据,经过处理之后写入到提纯之后的 Iceberg 表中。此时,可能还有业务需要对数据做进一步的聚合,那么我们继续在 Iceberg 表上启动增量 Flink 作业,将聚合之后的数据结果写入到聚合表中。

有人会想,这个场景好像通过 Flink Hive 也能实现。 Flink Hive 的确可以实现,但写入到 Hive 的数据更多地是为了实现数仓的数据分析,而不是为了做增量拉取。一般来说,Hive 的增量写入以 Partition 为单位,时间是 15 m i n 15min 15min 以上,Flink 长期高频率地写入会造成 Partition 膨胀。而 Iceberg 容许实现 1 m i n 1min 1min 甚至 30 s 30s 30s 的增量写入,这样就可以大大提高了端到端数据的实时性,上层的分析作业可以看到更新的数据,下游的增量作业可以读取到更新的数据。

3.2 CDC 数据实时摄入摄出

Flink CDC(Change Data Capture)增量数据写入 Iceberg。

  • 支持准实时的数据入湖和数据分析。
  • 计算引擎原生支持 CDC,无需添加额外的组件。
  • 采用统一的数据湖存储方案,并支持多种数据分析引擎。
  • 支持增量数据读取。

在这里插入图片描述
可以用 Flink Iceberg 来分析来自 MySQL 等关系型数据库的 binlog 等。一方面,Apache Flink 已经原生地支持 CDC 数据解析,一条 binlog 数据通过 ververica flink-cdc-connector 拉取之后,自动转换成 Flink Runtime 能识别的 INSERTDELETEUPDATE_BEFOREUPDATE_AFTER 四种消息,供用户做进一步的实时计算。

此外,CDC 数据成功入湖 Iceberg 之后,我们还会打通常见的计算引擎,例如 Presto、Spark、Hive 等,他们都可以实时地读取到 Iceberg 表中的最新数据。

MySQL Binlog 是二进制格式的日志文件,但是不能把 binlog 文件等同于 OS 系统某目录下的具体文件,这是狭隘的。Binlog 是用来记录 MySQL 内部对数据库的改动(只记录对数据的修改操作),主要用于数据库的主从复制以及增量恢复。

3.3 从 Iceberg 历史数据启动 Flink 任务

在这里插入图片描述
上面的架构是采用 Iceberg 全量数据和 Kafka 的增量数据来驱动新的 Flink 作业。如果需要过去很长时间例如一年的数据,可以采用常见的 Lambda 架构,离线链路通过 Kafka → Flink → Iceberg 同步写入到数据湖,由于 Kafka 成本较高,保留最近 7 7 7 天数据即可,Iceberg 存储成本较低,可以存储全量的历史数据,启动新 Flink 作业的时候,只需要去拉 Iceberg 的数据,跑完之后平滑地对接到 Kafka 数据即可。

3.4 通过 Iceberg 数据来修正实时聚合结果

在这里插入图片描述
同样是在 Lambda 架构下,实时链路由于事件丢失或者到达顺序的问题,可能导致流计算端结果不一定完全准确,这时候一般都需要全量的历史数据来订正实时计算的结果。而我们的 Iceberg 可以很好地充当这个角色,因为它可以高性价比地管理好历史数据。

4.Iceberg 0.11.1 源代码编译

4.1 编译 Iceberg

构建 Iceberg 需要 Grade 5.6 5.6 5.6 和 Java 8 8 8 的环境。

4.1.1 下载 Iceberg 0.11.1 软件包

下载地址:

  • https://github.com/apache/iceberg/releases/tag/apache-iceberg-0.11.1
  • https://www.apache.org/dyn/closer.cgi/iceberg/apache-iceberg-0.11.0/apache-iceberg-0.11.0.tar.gz

4.1.2 解压 Iceberg 0.11.1 软件包

[bigdata@bigdata185 software]$ tar -zxvf iceberg-apache-iceberg-0.11.1.tar.gz -C /opt/module/ 
[bigdata@bigdata185 software]$ cd /opt/module/iceberg-apache-iceberg-0.11.1/

4.1.3 修改对应的版本

我们选择最稳定的版本进行编译,Hadoop 2.7.7 2.7.7 2.7.7、Hive 2.3.9 2.3.9 2.3.9、Flink 1.11.6 1.11.6 1.11.6、Spark 3.0.3 3.0.3 3.0.3

org.apache.flink:* = 1.11.6 
org.apache.hadoop:* = 2.7.7
org.apache.hive:hive-metastore = 2.3.9 
org.apache.hive:hive-serde = 2.3.9 
org.apache.spark:spark-hive_2.12 = 3.0.3

4.1.4 编辑 build.gradle 文件,添加国内源

(1)在 buildscriptrepositories 中添加:

maven { url 'https://mirrors.huaweicloud.com/repository/maven/' }

添加后如下所示:

buildscript {repositories {jcenter()gradlePluginPortal()maven { url 'https://mirrors.huaweicloud.com/repository/maven/' }}dependencies {classpath 'com.github.jengelman.gradle.plugins:shadow:5.0.0'classpath 'com.palantir.baseline:gradle-baseline-java:3.36.2'classpath 'com.palantir.gradle.gitversion:gradle-git-version:0.12.3'classpath 'com.diffplug.spotless:spotless-plugin-gradle:3.14.0'classpath 'gradle.plugin.org.inferred:gradle-processors:2.1.0'classpath 'me.champeau.gradle:jmh-gradle-plugin:0.4.8'}
}

(2)allprojects 中添加:

maven { url 'https://mirrors.huaweicloud.com/repository/maven/' }

添加后如下所示

allprojects {group = "org.apache.iceberg"version = getProjectVersion()repositories {maven { url 'https://mirrors.huaweicloud.com/repository/maven/' }mavenCentral()mavenLocal()}
}

4.1.5 下载依赖(可选)

进入项目根目录,执行脚本:

[bigdata@bigdata185 iceberg-apache-iceberg-0.11.1]$ ./gradlew dependencies

在这里插入图片描述

4.1.6 正式编译

(1)进入项目根目录,执行:

[bigdata@bigdata185 iceberg-apache-iceberg-0.11.1]$ ./gradlew build

(2)上述命令会执行代码里的单元测试,如果不需要,则执行以下命令:

[bigdata@bigdata185 iceberg-apache-iceberg-0.11.1]$ ./gradlew build -x test -x scalaStyle

在这里插入图片描述

4.1.7 生成的目录

在这里插入图片描述

4.2 Iceberg 环境部署

在后面的章节中,我们分别介绍如何集成 Iceberg 0.11.1Flink 1.11.6Spark 3.0.3Hive 2.3.9

5.总结

  • 数据湖的解决方案 Iceberg 介绍。
  • Apache Iceberg 的技术实现细节。
  • Iceberg 结合 Flink 场景分享。
  • Iceberg 0.11.1 0.11.1 0.11.1 源码编译。

这篇关于【大数据】Apache Iceberg 概述和源代码的构建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773381

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了