【upc 9541 矩阵乘法】非正解

2024-03-04 03:08
文章标签 矩阵 乘法 upc 9541 非正解

本文主要是介绍【upc 9541 矩阵乘法】非正解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习算法很大程度上基于矩阵运算。例如神经网络中的全连接本质上是一个矩阵乘法,而卷积运算也通常是用矩阵乘法来实现的。有一些科研工作者为了让神经网络的计算更快捷,提出了二值化网络的方法,就是将网络权重压缩成只用两种值表示的形式,这样就可以用一些 trick 加速计算了。例如两个二进制向量点乘,可以用计算机中的与运算代替,然后统计结果中 1 的个数即可。
然而有时候为了降低压缩带来的误差,只允许其中一个矩阵被压缩成二进制。这样的情况下矩阵乘法运算还能否做进一步优化呢?给定一个整数矩阵A 和一个二值矩阵B,计算矩阵乘法 C=A×B。为了减少输出,你只需要计算 C 中所有元素的的异或和即可。
输入

第一行有三个整数 N,P,M, 表示矩阵 A,B 的大小分别是 N×P,P×M 。
接下来 N 行是矩阵 A 的值,每一行有 P 个数字。第 i+1 行第 j 列的数字为 Ai,j, Ai,j 用大写的16进制表示(即只包含 0~9, A~F),每个数字后面都有一个空格。
接下来 M 行是矩阵 B 的值,每一行是一个长为 P 的 01字符串。第 i+N+1 行第 j 个字符表示 Bj,i 的值。
输出
一个整数,矩阵 C 中所有元素的异或和。
样例输入:
4 3 2
3 4
8 A
F 5
6 7
01
11
10
样例输出
2
提示  2≤N,M≤4096,1≤P≤64,0≤Ai,j<65536,0≤Bi,j≤1.
暴力过的
 

#include <bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#define X 10005
#define inf 0x3f3f3f3f
#define PI 3.141592653589793238462643383
#define IO  ios::sync_with_stdio(false),cin.tie(0), cout.tie(0);
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
ll A[10000][100];
ll B[100][10000];
int n,p,m;
int main()
{scanf("%d%d%d",&n,&p,&m);for(int i=1;i<=n;++i)for(int j=1;j<=p;++j){scanf("%x",&A[i][j]);}int t;for(int i=1;i<=m;++i){for(int j=1;j<=p;++j){scanf("%1d",&t);B[j][i]=t;}}ll ans=0;for(int i=1;i<=n;++i){for(int j=1;j<=m;++j){ll ret=0;for(int k=1;k<=p;++k)ret+=A[i][k]*B[k][j];ans^=ret;}}printf("%lld\n",ans);return 0;
}

优化

这篇关于【upc 9541 矩阵乘法】非正解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771825

相关文章

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

【UVA】10003-Cutting Sticks(动态规划、矩阵链乘)

一道动态规划题,不过似乎可以用回溯水过去,回溯的话效率很烂的。 13988658 10003 Cutting Sticks Accepted C++ 1.882 2014-08-04 09:26:49 AC代码: #include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include

算法练习题17——leetcode54螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。  代码 import java.util.*;class Solution {public List<Integer> spiralOrder(int[][] matrix) {// 用于存储螺旋顺序遍历的结果List<Integer> result = new ArrayList

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使

高精度加法,乘法,阶乘

#include <iostream>#include <map>#include <string>#include <algorithm>using namespace std;const int Max = 50000;string str1,str2;/***********乘法***********/void chenfa(){cin >> str1>>str2;int a

最大子矩阵和问题归纳总结

一,最大子矩阵问题: 给定一个n*n(0< n <=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。 Example: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 其中左上角的子矩阵: 9 2 -4 1 -1 8 此子矩阵的值为9+2+(-4)+1+(-1)+8=15。 二,分析 子矩阵是在矩阵