UCSF DOCK 分子对接详细案例(03)-分子从头设计de novo Design

2024-03-03 08:28

本文主要是介绍UCSF DOCK 分子对接详细案例(03)-分子从头设计de novo Design,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎浏览我的CSND博客! Blockbuater_drug …点击进入


前言

本文是UCSF DOCK的使用案例分享,包括DOCK 6.11的de novo Design 模块包含的三项功能:
(1)Generic de novo design
(2)De Novo Refinement
(3)用户自定义生成片段库并实现Focused De Novo Design

一、 软件及操作环境

操作环境:Ubuntu 22.04
软件版本:UCSF DOCK 6.11,安装可以参考这篇博文;UCSF Chimera 1.17.3,UCSF ChimeraX 1.7.1,安装可以参考这篇博文。

二、研究目的

NX-2127是一款具有双重活性的口服小分子靶向蛋白降解剂,可以布鲁顿氏酪氨酸激酶(BTK)蛋白。在与BTK结合的同时,NX-2127还可以招募E3泛素连接酶,使BTK蛋白“泛素化”,从而BTK被蛋白酶体降解。

在本实例中,我们将使用DOCK的通用片段库,从头开始为我们的受体构建新的配体:
首先,展示通用的Generic de novo design,随后是基于anchor的优化生成De Novo Refinement,最后是基于用户自定义生成片段库的Focused De Novo Design。

三、结构文件准备

grid文件来自于前一篇案例分享:UCSF DOCK 分子对接详细案例(02)-并行用于高通量虚拟筛选
也可以在此下载本案例需要的输入文件:下载

新建本案例需要的目录:

cd DOCK_workdir
mkdir 009_denovo_generic 010_denovo_refine 011_denovo_focused

现在,DOCK_workdir 内容如下:
在这里插入图片描述

四、 DOCK中 de novo design

4.1 generic de novo design

cd ./009_denovo_generic

将此前建立的格点文件.bmp和.nrg文件复制到本目录:

cp ../003_gridbox/grid.bmp ../003_gridbox/grid.nrg ./

创建参数输入文件generic.in,输入以下内容:

conformer_search_type                                        denovo
dn_fraglib_scaffold_file                                     $DOCKHOME/parameters/fraglib_scaffold.mol2
dn_fraglib_linker_file                                       $DOCKHOME/parameters/fraglib_linker.mol2
dn_fraglib_sidechain_file                                    $DOCKHOME/parameters/fraglib_sidechain.mol2
dn_user_specified_anchor                                     no
dn_torenv_table                                              $DOCKHOME/parameters/fraglib_torenv.dat
dn_name_identifier                                           8u2e_generic
dn_sampling_method                                           graph
dn_graph_max_picks                                           30
dn_graph_breadth                                             3
dn_graph_depth                                               2
dn_graph_temperature                                         100.0
dn_pruning_conformer_score_cutoff                            100.0
dn_pruning_conformer_score_scaling_factor                    2.0
dn_pruning_clustering_cutoff                                 100.0
dn_mol_wt_cutoff_type                                        soft
dn_upper_constraint_mol_wt                                   550.0
dn_lower_constraint_mol_wt                                   0.0
dn_mol_wt_std_dev                                            35.0
dn_constraint_rot_bon                                        15
dn_constraint_formal_charge                                  2.0
dn_heur_unmatched_num                                        1
dn_heur_matched_rmsd                                         2.0
dn_unique_anchors                                            1
dn_max_grow_layers                                           9
dn_max_root_size                                             25
dn_max_layer_size                                            25
dn_max_current_aps                                           5
dn_max_scaffolds_per_layer                                   1
dn_write_checkpoints                                         yes
dn_write_prune_dump                                          no
dn_write_orients                                             no
dn_write_growth_trees                                        no
dn_output_prefix                                             8u2e_generic
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
use_database_filter                                          no
orient_ligand                                                yes
automated_matching                                           yes
receptor_site_file                                           ../002_surface_spheres/selected_spheres.sph
max_orientations                                             1000
critical_points                                              no
chemical_matching                                            no
use_ligand_spheres                                           no
bump_filter                                                  yes
bump_grid_prefix                                             grid
max_bumps_anchor                                             2
max_bumps_growth                                             2
score_molecules                                              yes
contact_score_primary                                        no
grid_score_primary                                           yes
grid_score_rep_rad_scale                                     1
grid_score_vdw_scale                                         1
grid_score_es_scale                                          1
grid_score_grid_prefix                                       grid
minimize_ligand                                              yes
minimize_anchor                                              yes
minimize_flexible_growth                                     yes
use_advanced_simplex_parameters                              no
simplex_max_cycles                                           1
simplex_score_converge                                       0.1
simplex_cycle_converge                                       1.0
simplex_trans_step                                           1.0
simplex_rot_step                                             0.1
simplex_tors_step                                            10.0
simplex_anchor_max_iterations                                500
simplex_grow_max_iterations                                  250
simplex_grow_tors_premin_iterations                          0
simplex_random_seed                                          0
simplex_restraint_min                                        no
atom_model                                                   all
vdw_defn_file                                                $DOCKHOME/parameters/vdw_de_novo.defn
flex_defn_file                                               $DOCKHOME/parameters/flex.defn
flex_drive_file                                              $DOCKHOME/parameters/flex_drive.tbl

编写slurm运行脚本generic.sh,写入以下内容:

#! /bin/sh
#SBATCH --time=5:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=10
#SBATCH --job-name=BTK_generic
#SBATCH --output=BTK_genericdock6 -i generic.in

运行:

sbatch cart_min.sh

大约运行30 min。
结果文件:8u2e_generic.denovo_build.mol2,生成565个分子,可以通过Chimera或者ChimeraX的ViewDock查看:
在这里插入图片描述

4.2 Rescoring the Outputs对输出重新评分

通过4.1中的方式产生的分子已经通过grid score进行评分,可以进一步做rigid docking能量最小化优化,以此更加准确评价生成分子与受体之间结合能力。

vim generic_min.in
conformer_search_type                                        rigid
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
ligand_atom_file                                             8u2e_generic.denovo_build.mol2
limit_max_ligands                                            no
skip_molecule                                                no
read_mol_solvation                                           no
calculate_rmsd                                               no
use_database_filter                                          no
orient_ligand                                                yes
automated_matching                                           yes
receptor_site_file                                           ../002_surface_spheres/selected_spheres.sph
max_orientations                                             1000
critical_points                                              no
chemical_matching                                            no
use_ligand_spheres                                           no
bump_filter                                                  yes
bump_grid_prefix                                             grid
max_bumps_anchor                                             2
max_bumps_growth                                             2
score_molecules                                              yes
contact_score_primary                                        no
grid_score_primary                                           yes
grid_score_rep_rad_scale                                     1
grid_score_vdw_scale                                         1
grid_score_es_scale                                          1
grid_score_grid_prefix                                       ../003_gridbox/grid
minimize_ligand                                              yes
simplex_max_iterations                                       1000
simplex_tors_premin_iterations                               0
simplex_max_cycles                                           1
simplex_score_converge                                       0.1
simplex_cycle_converge                                       1.0
simplex_trans_step                                           1.0
simplex_rot_step                                             0.1
simplex_tors_step                                            10.0
simplex_random_seed                                          0
simplex_restraint_min                                        no
atom_model                                                   all
vdw_defn_file                                                $DOCKHOME/parameters/vdw_de_novo.defn
flex_defn_file                                               $DOCKHOME/parameters/flex.defn
flex_drive_file                                              $DOCKHOME/parameters/flex_drive.tbl
ligand_outfile_prefix                                        generic_min
write_orientations                                           no
num_scored_conformers                                        1
rank_ligands                                                 no

运行:

dock6 -i generic_min.in

或者,编写slurm运行脚本generic_min.sh,写入以下内容:

#! /bin/bash
#SBATCH --time=5:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=10
#SBATCH --job-name=BTK_generic.min
#SBATCH --output=BTK_generic.mindock6 -i generic_min.in

slurm运行:

sbatch generic_min.sh

大约运行5 min。
结果文件:generic_min_scored.mol2,对生成565个分子优化,可以通过Chimera或者ChimeraX的ViewDock查看:
在这里插入图片描述通过对比可以看出,优化后排名靠前的分子与未优化时靠前的分子,结构相近且具有较小的片段,因此该分子或者说该分子系列可能具有很好的受体结合能力。

五、 De Novo Refinement

cd ../010_denovo_refine

如何在固有配体的指引下生成新的结构,并且与受体依然有良好的结合是药物设计的核心任务。该项工作往往是对配体受体充分了解后开展的,没特定的模式可供套用。

如下图所示,N-甲基哌嗪处于口袋外的溶剂区域,如果采用fast-follow结构修饰的研究策略,那单独改造这个部分是保持活性的同时,重点研究的片段之一。如果考虑采用de novo生成方法,获得全新骨架系列分子的抑制剂,以上方法将不再适用。

一般而言,口袋内部的结合对配体-受体的结合起着非常重要的作用,结合熵变与结合焓变可能都是非常重要的结合贡献力量。保持溶剂区片段不变,寻找具有新型结构的在口袋内部结合的片段,是一项具有挑战性但意义巨大的工作。

本实例是基于已知的药效分子与靶点BTK的结合模式,利用DOCK De Novo Refinement功能,产生新的具有潜在结合的配体分子,保留溶剂区片段(可以尝试,同时保留另外一个靠近口袋外的片段,此处不再展示)。分为三部分:

准备配体

在这里插入图片描述如上图所示,删除配体分子溶剂区片段以外的结构,保存分子为.mol2格式,查看删除分子的连接原子编号(这里是C24),在mol2分子中修改其原子类型为Du,并标记原子名字为Du1,这个位置是产生新结构的起始位置。如下:
在这里插入图片描述
保存文件,名称Chopped_ligand_for_denovo.mol2。

运行Refinement

保存运行参数文件:de_novo_refine.in,内容如下:

conformer_search_type                                        denovo
dn_fraglib_scaffold_file                                     $DOCKHOME/parameters/fraglib_scaffold.mol2
dn_fraglib_linker_file                                       $DOCKHOME/parameters/fraglib_linker.mol2
dn_fraglib_sidechain_file                                    $DOCKHOME/parameters/fraglib_sidechain.mol2
dn_user_specified_anchor                                     yes
dn_fraglib_anchor_file                                       Chopped_ligand_for_denovo.mol2
dn_torenv_table                                              $DOCKHOME/parameters/fraglib_torenv.dat
dn_name_identifier                                           8u2e_refine
dn_sampling_method                                           graph
dn_graph_max_picks                                           30
dn_graph_breadth                                             3
dn_graph_depth                                               2
dn_graph_temperature                                         100.0
dn_pruning_conformer_score_cutoff                            100.0
dn_pruning_conformer_score_scaling_factor                    2.0
dn_pruning_clustering_cutoff                                 100.0
dn_mol_wt_cutoff_type                                        soft
dn_upper_constraint_mol_wt                                   550.0
dn_lower_constraint_mol_wt                                   0.0
dn_mol_wt_std_dev                                            35.0
dn_constraint_rot_bon                                        15
dn_constraint_formal_charge                                  2.0
dn_heur_unmatched_num                                        1
dn_heur_matched_rmsd                                         2.0
dn_unique_anchors                                            1
dn_max_grow_layers                                           9
dn_max_root_size                                             25
dn_max_layer_size                                            25
dn_max_current_aps                                           5
dn_max_scaffolds_per_layer                                   1
dn_write_checkpoints                                         yes
dn_write_prune_dump                                          no
dn_write_orients                                             no
dn_write_growth_trees                                        no
dn_output_prefix                                             8u2e_refine
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
use_database_filter                                          no
orient_ligand                                                no
bump_filter                                                  no
score_molecules                                              yes
contact_score_primary                                        no
grid_score_primary                                           yes
grid_score_rep_rad_scale                                     1
grid_score_vdw_scale                                         1
grid_score_es_scale                                          1
grid_score_grid_prefix                                       ../003_gridbox/grid
minimize_ligand                                              yes
minimize_anchor                                              no
minimize_flexible_growth                                     yes
use_advanced_simplex_parameters                              no
simplex_max_cycles                                           1
simplex_score_converge                                       0.1
simplex_cycle_converge                                       1.0
simplex_trans_step                                           1.0
simplex_rot_step                                             0.1
simplex_tors_step                                            10.0
simplex_grow_max_iterations                                  250
simplex_grow_tors_premin_iterations                          0
simplex_random_seed                                          0
simplex_restraint_min                                        yes
simplex_coefficient_restraint                                10.0
atom_model                                                   all
vdw_defn_file                                                $DOCKHOME/parameters/vdw_de_novo.defn
flex_defn_file                                               $DOCKHOME/parameters/flex.defn
flex_drive_file                                              $DOCKHOME/parameters/flex_drive.tbl

关于de_novo_refine.in一些参数的说明:

-dn_user_specified_anchor 设置为no时,如果希望运行从头设计运行,其中他们不指定具有虚拟原子的输入锚,DOCK将使用片段库中的部分作为锚点来构建,允许尝试多个不同的锚点和方向。
-dn_sampling_method 可以是“graph”、“random”或“exhaustive”。“graph”将选择与先前选择的改善网格得分的部分相似的片段,因此图将试图以促进改善配体的方式偏向未来的片段选择。术语“random”将导致片段被随机选择。“exhaustive”将确保在每个可能的位置尝试每个可能的片段,会显著增加所需的计算时间。
-dn_graph_max_picks 和dn_num_random_picks(后者在上面未示出)控制每个生长层每个虚原子尝试多少片段。
-dn_max_grow_layers 控制DOCK将从初始锚上的每个虚拟原子向外生长多少个片段。8-9层,通常用于从头开始生长配体而不设置锚。
-minimize_ligand 当设置为yes时,将尝试在每个片段选择后使配体能量最小化。
-minimize_anchor 当设置为yes时,将尝试在连接片段之前使锚能量最小化,而不管锚是由用户提供还是随机选择。对于从头运行,其中锚是以已知方向结合的配体的一部分,最好将此参数设置为“no”。否则,DOCK 可能会在尝试用新的片段生长之前改变你的锚的方向,产生的分子可能不能反映配体通常如何结合。
-simplex_restraint_min 应设置为yes时,该参数基本上将拉伸系绳应用于初始锚,允许其为了能量最小化而稍微偏离其起始位置,但影响RMSD。 

运行:

dock6 -i de_novo_refine.in

查看结果

生成8u2e_refine.denovo_build.mol2文件,可以用ChimeraX ViewDock查看。

在这里插入图片描述

六、 Focused De Novo Design

cd ../011_denovo_focused

生成片段库

DOCK可以读取包含有一个或者多个分子的mol2文件,生成片段库。以输入up9分子为例。
新建片段生成的输入参数文件frag_gen.in,输入以下内容:

conformer_search_type                                        flex
write_fragment_libraries                                     yes
fragment_library_prefix                                      up9_fraglib
fragment_library_freq_cutoff                                 1
fragment_library_sort_method                                 freq
fragment_library_trans_origin                                yes
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
ligand_atom_file                                             ../001_structure/up9_rec_withH.mol2
limit_max_ligands                                            no
skip_molecule                                                no
read_mol_solvation                                           no
calculate_rmsd                                               no
use_database_filter                                          no
orient_ligand                                                no
bump_filter                                                  no
score_molecules                                              no
atom_model                                                   all
vdw_defn_file                                                $DOCKHOME/parameters/vdw_de_novo.defn
flex_defn_file                                               $DOCKHOME/parameters/flex.defn
flex_drive_file                                              $DOCKHOME/parameters/flex_drive.tbl
ligand_outfile_prefix                                        up9_trash
write_orientations                                           no
num_scored_conformers                                        1
rank_ligands                                                 no

运行:

dock6 -i frag_gen.in -o frag_gen.out

生成以下6个文件,可以使用ChimeraX查看。
在这里插入图片描述
frag_gen.in输入参数的说明:

-fragment_library_freq_cutoff 作为一种排序机制,只允许出现指定次数的片段进入库。当设置为1时,这允许将出现一次的任何片段添加到库中。
-fragment_library_transs_origin 设置为yes时,会将空间中的所有片段平移到一个位置,这样当在Chimera或ChimeraX等程序中查看时,用户可以查看各种片段,而无需在每次切换正在查看的片段时调整位置。

Fragment Library Merging

可以将DOCK自带的片段库与用户生成的片段库合并使用。
将自带库拷贝进工作目录:

cp $DOCKHOME/parameters/fraglib_s*.mol2 $DOCKHOME/parameters/fraglib_linker.mol2 $DOCKHOME/parameters/fraglib_torenv.dat ./
cat *linker* >> combined_fraglib_linker.mol2
cat *sidechain* >> combined_fraglib_sidechain.mol2
cat *scaffold* >> combined_fraglib_scaffold.mol2

合并torsion files:

python $DOCKHOME/bin/combine_torenv.py fraglib_torenv.dat up9_fraglib_torenv.dat

以上便得到片段和torsion数据库。

Running the Focused De Novo Design

新建Focused De Novo Design的输入参数文件focused.in,输入以下内容:

conformer_search_type                                        denovo
dn_fraglib_scaffold_file                                     combined_fraglib_scaffold.mol2
dn_fraglib_linker_file                                       combined_fraglib_linker.mol2
dn_fraglib_sidechain_file                                    combined_fraglib_sidechain.mol2
dn_user_specified_anchor                                     yes
dn_fraglib_anchor_file                                       ../010_denovo_refine/Chopped_ligand_for_denovo.mol2
dn_torenv_table                                              fraglib_torenv.dat
dn_name_identifier                                           focused_8u2e.combined
dn_sampling_method                                           graph
dn_graph_max_picks                                           30
dn_graph_breadth                                             3
dn_graph_depth                                               3
dn_graph_temperature                                         100.0
dn_pruning_conformer_score_cutoff                            100.0
dn_pruning_conformer_score_scaling_factor                    2.0
dn_pruning_clustering_cutoff                                 100.0
dn_mol_wt_cutoff_type                                        soft
dn_upper_constraint_mol_wt                                   550.0
dn_lower_constraint_mol_wt                                   0.0
dn_mol_wt_std_dev                                            35.0
dn_constraint_rot_bon                                        15
dn_constraint_formal_charge                                  2.0
dn_heur_unmatched_num                                        1
dn_heur_matched_rmsd                                         2.0
dn_unique_anchors                                            1
dn_max_grow_layers                                           5
dn_max_root_size                                             25
dn_max_layer_size                                            25
dn_max_current_aps                                           5
dn_max_scaffolds_per_layer                                   1
dn_write_checkpoints                                         yes
dn_write_prune_dump                                          no
dn_write_orients                                             no
dn_write_growth_trees                                        no
dn_output_prefix                                             8u2e_focused
use_internal_energy                                          yes
internal_energy_rep_exp                                      12
internal_energy_cutoff                                       100.0
use_database_filter                                          no
orient_ligand                                                no
bump_filter                                                  no
score_molecules                                              yes
contact_score_primary                                        no
grid_score_primary                                           yes
grid_score_rep_rad_scale                                     1
grid_score_vdw_scale                                         1
grid_score_es_scale                                          1
grid_score_grid_prefix                                       ../003_gridbox/grid
minimize_ligand                                              no
atom_model                                                   all
vdw_defn_file                                                $DOCKHOME/parameters/vdw_de_novo.defn
flex_defn_file                                               $DOCKHOME/parameters/flex.defn
flex_drive_file                                              $DOCKHOME/parameters/flex_drive.tbl

运行:

dock6 -i focused.in -o focused.out

查看结果:

在以上演示条件下,生成1061个分子,可以通过ViewDock查看。

实际使用,片段库和生成参数均需要摸索和优化,才能生成需要的新分子,是一个不断优化和探索的过程。

总结

在本实例中,我们使用DOCK的通用片段库,从头开始为我们的受体构建新的配体;也使用DOCK片段数据库构建功能建立片段数据库用于分子生成。主要分为三个部分:首先,展示通用的Generic de novo design,随后是基于anchor的优化生成De Novo Refinement,最后是基于用户自定义生成片段库的Focused De Novo Design。

参考资料

  1. https://ringo.ams.stonybrook.edu/index.php/Main_Page
  2. https://dock.compbio.ucsf.edu/DOCK_6/dock6_manual.htm
  3. https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c01031

欢迎浏览我的CSND博客! Blockbuater_drug …点击进入

这篇关于UCSF DOCK 分子对接详细案例(03)-分子从头设计de novo Design的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769055

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

使用SpringBoot创建一个RESTful API的详细步骤

《使用SpringBoot创建一个RESTfulAPI的详细步骤》使用Java的SpringBoot创建RESTfulAPI可以满足多种开发场景,它提供了快速开发、易于配置、可扩展、可维护的优点,尤... 目录一、创建 Spring Boot 项目二、创建控制器类(Controller Class)三、运行

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public