数据结构实践——大数据集上排序算法性能的体验

2024-03-03 06:58

本文主要是介绍数据结构实践——大数据集上排序算法性能的体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是针对[数据结构基础系列(9):排序]的实践项目。

【项目 - 大数据集上排序算法性能的体验】
设计一个函数,产生一个至少5万条记录的数据集合。在同一数据集上,用直接插入排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序等算法进行排序,记录所需要的时间,经过对比,得到对复杂度不同的各种算法在运行时间方面的感性认识。

提示1:这一项目需要整合多种排序算法,可以考虑先建设排序算法库,作为我们这门课算法库的收官之作;
提示2:本项目旨在获得对于复杂度不同算法的感性认识,由于数据分布特点、计算机运行状态等不同,其结果并不能完全代替对算法复杂度的理论分析;
提示3:由于C语言标准提供的时间函数只精确到秒,几种 O(nlog 2 n)  级别的算法,在5万条记录的压力下,并不能明显地看出优劣,可以忽略直接插入排序、冒泡排序、直接选择排序这三种相对低效率的算法(以节约时间。若能够忍受他们长时间地运行,请自便。),成10倍地加大数据量,然后进行观察。

[参考解答]
1.测试用的主控程序——main.cpp

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <time.h>
#include "sort.h"void GetLargeData(RecType *&R, int n)
{srand(time(0));R=(RecType*)malloc(sizeof(RecType)*n);for(int i=0; i<n; i++)R[i].key= rand();  //产生0~RAND_MAX间的数printf("生成了%d条记录\n", n);
}//调用某一排序算法完成排序,返回排序用时
long Sort(RecType *&R, int n, void f(RecType*, int))
{int i;long beginTime, endTime;RecType *R1=(RecType*)malloc(sizeof(RecType)*n);for (i=0;i<n;i++)R1[i]=R[i];beginTime = time(0);f(R1,n);endTime = time(0);free(R1);return endTime-beginTime;
}//调用基数排序算法完成排序,返回排序用时
long Sort1(RecType *&R, int n)
{long beginTime, endTime;RadixRecType *p;CreateLink(p,R,n);beginTime = time(0);RadixSort(p);endTime = time(0);DestoryLink(p);return endTime-beginTime;
}int main()
{RecType *R;int n = MaxSize;   //测试中, MaxSize取50WGetLargeData(R, n);printf("各种排序花费时间:\n");printf("  直接插入排序:%ld\n", Sort(R, n, InsertSort));printf("  希尔排序:%ld\n", Sort(R, n, ShellSort));printf("  冒泡排序:%ld\n", Sort(R, n, BubbleSort));printf("  快速排序:%ld\n", Sort(R, n, QuickSort));printf("  直接选择排序:%ld\n", Sort(R, n, SelectSort));printf("  堆排序:%ld\n", Sort(R, n, HeapSort));printf("  归并排序:%ld\n", Sort(R, n, MergeSort));printf("  基数排序:%ld\n", Sort1(R, n));free(R);return 0;
}

2.头文件 —— sort.h

#ifndef SORT_H_INCLUDED
#define SORT_H_INCLUDED#define MaxSize 50000      //最多的数据,取5万,只测试快速算法,可以往大调整//下面的符号常量和结构体针对基数排序
#define Radix 10           //基数的取值
#define Digits 10          //关键字位数typedef int KeyType;    //定义关键字类型
typedef char InfoType[10];
typedef struct          //记录类型
{KeyType key;        //关键字项InfoType data;      //其他数据项,类型为InfoType
} RecType;              //排序的记录类型定义typedef struct node
{KeyType data;      //记录的关键字,同算法讲解中有差别struct node *next;
} RadixRecType;void InsertSort(RecType R[],int n); //直接插入排序
void ShellSort(RecType R[],int n);  //希尔排序算法
void BubbleSort(RecType R[],int n); //冒泡排序
void QuickSort(RecType R[],int n);  //快速排序
void SelectSort(RecType R[],int n);  //直接选择排序
void HeapSort(RecType R[],int n);  //堆排序
void MergeSort(RecType R[],int n); //归并排序//下面函数支持基数排序
void CreateLink(RadixRecType *&p,RecType R[],int n);   //创建基数排序用的链表
void DestoryLink(RadixRecType *&p); //释放基数排序用的链表
void RadixSort(RadixRecType *&p); //基数排序#endif // SORT_H_INCLUDED

3.算法的实现—— sort.cpp

#include "sort.h"
#include <malloc.h>//1. 对R[0..n-1]按递增有序进行直接插入排序
void InsertSort(RecType R[],int n)
{int i,j;RecType tmp;for (i=1; i<n; i++){tmp=R[i];j=i-1;            //从右向左在有序区R[0..i-1]中找R[i]的插入位置while (j>=0 && tmp.key<R[j].key){R[j+1]=R[j]; //将关键字大于R[i].key的记录后移j--;}R[j+1]=tmp;      //在j+1处插入R[i]}
}//2. 希尔排序算法
void ShellSort(RecType R[],int n)
{int i,j,gap;RecType tmp;gap=n/2;                //增量置初值while (gap>0){for (i=gap; i<n; i++) //对所有相隔gap位置的所有元素组进行排序{tmp=R[i];j=i-gap;while (j>=0 && tmp.key<R[j].key)//对相隔gap位置的元素组进行排序{R[j+gap]=R[j];j=j-gap;}R[j+gap]=tmp;j=j-gap;}gap=gap/2;  //减小增量}
}//3. 冒泡排序
void BubbleSort(RecType R[],int n)
{int i,j,exchange;RecType tmp;for (i=0; i<n-1; i++){exchange=0;for (j=n-1; j>i; j--)   //比较,找出最小关键字的记录if (R[j].key<R[j-1].key){tmp=R[j];  //R[j]与R[j-1]进行交换,将最小关键字记录前移R[j]=R[j-1];R[j-1]=tmp;exchange=1;}if (exchange==0)    //没有交换,即结束算法return;}
}//4. 对R[s]至R[t]的元素进行快速排序
void QuickSortR(RecType R[],int s,int t)
{int i=s,j=t;RecType tmp;if (s<t)                //区间内至少存在两个元素的情况{tmp=R[s];           //用区间的第1个记录作为基准while (i!=j)        //从区间两端交替向中间扫描,直至i=j为止{while (j>i && R[j].key>=tmp.key)j--;        //从右向左扫描,找第1个小于tmp.key的R[j]R[i]=R[j];      //找到这样的R[j],R[i]"R[j]交换while (i<j && R[i].key<=tmp.key)i++;        //从左向右扫描,找第1个大于tmp.key的记录R[i]R[j]=R[i];      //找到这样的R[i],R[i]"R[j]交换}R[i]=tmp;QuickSortR(R,s,i-1);     //对左区间递归排序QuickSortR(R,i+1,t);     //对右区间递归排序}
}//4. 快速排序辅助函数,对外同其他算法统一接口,内部调用递归的快速排序
void QuickSort(RecType R[],int n)
{QuickSortR(R, 0, n-1);
}//5. 直接选择排序
void SelectSort(RecType R[],int n)
{int i,j,k;RecType temp;for (i=0; i<n-1; i++)           //做第i趟排序{k=i;for (j=i+1; j<n; j++)   //在当前无序区R[i..n-1]中选key最小的R[k]if (R[j].key<R[k].key)k=j;            //k记下目前找到的最小关键字所在的位置if (k!=i)               //交换R[i]和R[k]{temp=R[i];R[i]=R[k];R[k]=temp;}}
}//6. 堆排序辅助之——调整堆
void sift(RecType R[],int low,int high)
{int i=low,j=2*i;                        //R[j]是R[i]的左孩子RecType temp=R[i];while (j<=high){if (j<high && R[j].key<R[j+1].key)  //若右孩子较大,把j指向右孩子j++;                                //变为2i+1if (temp.key<R[j].key){R[i]=R[j];                          //将R[j]调整到双亲结点位置上i=j;                                //修改i和j值,以便继续向下筛选j=2*i;}else break;                             //筛选结束}R[i]=temp;                                  //被筛选结点的值放入最终位置
}//6. 堆排序
void HeapSort(RecType R[],int n)
{int i;RecType temp;for (i=n/2; i>=1; i--) //循环建立初始堆sift(R,i,n);for (i=n; i>=2; i--) //进行n-1次循环,完成推排序{temp=R[1];       //将第一个元素同当前区间内R[1]对换R[1]=R[i];R[i]=temp;sift(R,1,i-1);   //筛选R[1]结点,得到i-1个结点的堆}
}//7.归并排序辅助1——合并有序表
void Merge(RecType R[],int low,int mid,int high)
{RecType *R1;int i=low,j=mid+1,k=0; //k是R1的下标,i、j分别为第1、2段的下标R1=(RecType *)malloc((high-low+1)*sizeof(RecType));  //动态分配空间while (i<=mid && j<=high)       //在第1段和第2段均未扫描完时循环if (R[i].key<=R[j].key)     //将第1段中的记录放入R1中{R1[k]=R[i];i++;k++;}else                            //将第2段中的记录放入R1中{R1[k]=R[j];j++;k++;}while (i<=mid)                      //将第1段余下部分复制到R1{R1[k]=R[i];i++;k++;}while (j<=high)                 //将第2段余下部分复制到R1{R1[k]=R[j];j++;k++;}for (k=0,i=low; i<=high; k++,i++) //将R1复制回R中R[i]=R1[k];
}//7. 归并排序辅助2——一趟归并
void MergePass(RecType R[],int length,int n)    //对整个数序进行一趟归并
{int i;for (i=0; i+2*length-1<n; i=i+2*length)     //归并length长的两相邻子表Merge(R,i,i+length-1,i+2*length-1);if (i+length-1<n)                       //余下两个子表,后者长度小于lengthMerge(R,i,i+length-1,n-1);          //归并这两个子表
}//7. 归并排序
void MergeSort(RecType R[],int n)           //自底向上的二路归并算法
{int length;for (length=1; length<n; length=2*length) //进行log2n趟归并MergePass(R,length,n);
}//以下基数排序,为了统一测试有改造
//8. 基数排序的辅助函数,创建基数排序用的链表
void CreateLink(RadixRecType *&p,RecType R[],int n)   //采用后插法产生链表
{int i;RadixRecType *s,*t;for (i=0; i<n; i++){s=(RadixRecType *)malloc(sizeof(RadixRecType));s->data = R[i].key;if (i==0){p=s;t=s;}else{t->next=s;t=s;}}t->next=NULL;
}//8. 基数排序的辅助函数,释放基数排序用的链表
void DestoryLink(RadixRecType *&p)
{RadixRecType *q;while(p!=NULL){q=p->next;free(p);p=q;}return;
}//8. 实现基数排序:*p为待排序序列链表指针,基数R和关键字位数D已经作为符号常量定义好
void RadixSort(RadixRecType *&p)
{RadixRecType *head[Radix],*tail[Radix],*t; //定义各链队的首尾指针int i,j,k;unsigned int d1, d2=1;   //用于分离出第i位数字,见下面的注释for (i=1; i<=Digits; i++)                  //从低位到高位循环{//分离出倒数第i位数字,先通过对d1=10^i取余,得到其后i位,再通过整除d2=10^(i-1)得到第i位//例如,分离出倒数第1位,即个位数,先对d1=10取余,再整除d2=1//再例如,分离出倒数第2位,即十位数,先对d1=100取余,再整除d2=10//循环之前,d2已经初始化为1,在这一层循环末增加10倍//下面根据d2,得到d1的值d1=d2*10;for (j=0; j<Radix; j++)                 //初始化各链队首、尾指针head[j]=tail[j]=NULL;while (p!=NULL)                 //对于原链表中每个结点循环{k=(p->data%d1)/d2;           //分离出第i位数字kif (head[k]==NULL)          //进行分配{head[k]=p;tail[k]=p;}else{tail[k]->next=p;tail[k]=p;}p=p->next;                  //取下一个待排序的元素}p=NULL;                         //重新用p来收集所有结点for (j=0; j<Radix; j++)             //对于每一个链队循环if (head[j]!=NULL)          //进行收集{if (p==NULL){p=head[j];t=tail[j];}else{t->next=head[j];t=tail[j];}}t->next=NULL;                   //最后一个结点的next域置NULL//下面更新用于分离出第i位数字的d2d2*=10;}
}

这篇关于数据结构实践——大数据集上排序算法性能的体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768835

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个