数据结构实践——大数据集上排序算法性能的体验

2024-03-03 06:58

本文主要是介绍数据结构实践——大数据集上排序算法性能的体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是针对[数据结构基础系列(9):排序]的实践项目。

【项目 - 大数据集上排序算法性能的体验】
设计一个函数,产生一个至少5万条记录的数据集合。在同一数据集上,用直接插入排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序等算法进行排序,记录所需要的时间,经过对比,得到对复杂度不同的各种算法在运行时间方面的感性认识。

提示1:这一项目需要整合多种排序算法,可以考虑先建设排序算法库,作为我们这门课算法库的收官之作;
提示2:本项目旨在获得对于复杂度不同算法的感性认识,由于数据分布特点、计算机运行状态等不同,其结果并不能完全代替对算法复杂度的理论分析;
提示3:由于C语言标准提供的时间函数只精确到秒,几种 O(nlog 2 n)  级别的算法,在5万条记录的压力下,并不能明显地看出优劣,可以忽略直接插入排序、冒泡排序、直接选择排序这三种相对低效率的算法(以节约时间。若能够忍受他们长时间地运行,请自便。),成10倍地加大数据量,然后进行观察。

[参考解答]
1.测试用的主控程序——main.cpp

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <time.h>
#include "sort.h"void GetLargeData(RecType *&R, int n)
{srand(time(0));R=(RecType*)malloc(sizeof(RecType)*n);for(int i=0; i<n; i++)R[i].key= rand();  //产生0~RAND_MAX间的数printf("生成了%d条记录\n", n);
}//调用某一排序算法完成排序,返回排序用时
long Sort(RecType *&R, int n, void f(RecType*, int))
{int i;long beginTime, endTime;RecType *R1=(RecType*)malloc(sizeof(RecType)*n);for (i=0;i<n;i++)R1[i]=R[i];beginTime = time(0);f(R1,n);endTime = time(0);free(R1);return endTime-beginTime;
}//调用基数排序算法完成排序,返回排序用时
long Sort1(RecType *&R, int n)
{long beginTime, endTime;RadixRecType *p;CreateLink(p,R,n);beginTime = time(0);RadixSort(p);endTime = time(0);DestoryLink(p);return endTime-beginTime;
}int main()
{RecType *R;int n = MaxSize;   //测试中, MaxSize取50WGetLargeData(R, n);printf("各种排序花费时间:\n");printf("  直接插入排序:%ld\n", Sort(R, n, InsertSort));printf("  希尔排序:%ld\n", Sort(R, n, ShellSort));printf("  冒泡排序:%ld\n", Sort(R, n, BubbleSort));printf("  快速排序:%ld\n", Sort(R, n, QuickSort));printf("  直接选择排序:%ld\n", Sort(R, n, SelectSort));printf("  堆排序:%ld\n", Sort(R, n, HeapSort));printf("  归并排序:%ld\n", Sort(R, n, MergeSort));printf("  基数排序:%ld\n", Sort1(R, n));free(R);return 0;
}

2.头文件 —— sort.h

#ifndef SORT_H_INCLUDED
#define SORT_H_INCLUDED#define MaxSize 50000      //最多的数据,取5万,只测试快速算法,可以往大调整//下面的符号常量和结构体针对基数排序
#define Radix 10           //基数的取值
#define Digits 10          //关键字位数typedef int KeyType;    //定义关键字类型
typedef char InfoType[10];
typedef struct          //记录类型
{KeyType key;        //关键字项InfoType data;      //其他数据项,类型为InfoType
} RecType;              //排序的记录类型定义typedef struct node
{KeyType data;      //记录的关键字,同算法讲解中有差别struct node *next;
} RadixRecType;void InsertSort(RecType R[],int n); //直接插入排序
void ShellSort(RecType R[],int n);  //希尔排序算法
void BubbleSort(RecType R[],int n); //冒泡排序
void QuickSort(RecType R[],int n);  //快速排序
void SelectSort(RecType R[],int n);  //直接选择排序
void HeapSort(RecType R[],int n);  //堆排序
void MergeSort(RecType R[],int n); //归并排序//下面函数支持基数排序
void CreateLink(RadixRecType *&p,RecType R[],int n);   //创建基数排序用的链表
void DestoryLink(RadixRecType *&p); //释放基数排序用的链表
void RadixSort(RadixRecType *&p); //基数排序#endif // SORT_H_INCLUDED

3.算法的实现—— sort.cpp

#include "sort.h"
#include <malloc.h>//1. 对R[0..n-1]按递增有序进行直接插入排序
void InsertSort(RecType R[],int n)
{int i,j;RecType tmp;for (i=1; i<n; i++){tmp=R[i];j=i-1;            //从右向左在有序区R[0..i-1]中找R[i]的插入位置while (j>=0 && tmp.key<R[j].key){R[j+1]=R[j]; //将关键字大于R[i].key的记录后移j--;}R[j+1]=tmp;      //在j+1处插入R[i]}
}//2. 希尔排序算法
void ShellSort(RecType R[],int n)
{int i,j,gap;RecType tmp;gap=n/2;                //增量置初值while (gap>0){for (i=gap; i<n; i++) //对所有相隔gap位置的所有元素组进行排序{tmp=R[i];j=i-gap;while (j>=0 && tmp.key<R[j].key)//对相隔gap位置的元素组进行排序{R[j+gap]=R[j];j=j-gap;}R[j+gap]=tmp;j=j-gap;}gap=gap/2;  //减小增量}
}//3. 冒泡排序
void BubbleSort(RecType R[],int n)
{int i,j,exchange;RecType tmp;for (i=0; i<n-1; i++){exchange=0;for (j=n-1; j>i; j--)   //比较,找出最小关键字的记录if (R[j].key<R[j-1].key){tmp=R[j];  //R[j]与R[j-1]进行交换,将最小关键字记录前移R[j]=R[j-1];R[j-1]=tmp;exchange=1;}if (exchange==0)    //没有交换,即结束算法return;}
}//4. 对R[s]至R[t]的元素进行快速排序
void QuickSortR(RecType R[],int s,int t)
{int i=s,j=t;RecType tmp;if (s<t)                //区间内至少存在两个元素的情况{tmp=R[s];           //用区间的第1个记录作为基准while (i!=j)        //从区间两端交替向中间扫描,直至i=j为止{while (j>i && R[j].key>=tmp.key)j--;        //从右向左扫描,找第1个小于tmp.key的R[j]R[i]=R[j];      //找到这样的R[j],R[i]"R[j]交换while (i<j && R[i].key<=tmp.key)i++;        //从左向右扫描,找第1个大于tmp.key的记录R[i]R[j]=R[i];      //找到这样的R[i],R[i]"R[j]交换}R[i]=tmp;QuickSortR(R,s,i-1);     //对左区间递归排序QuickSortR(R,i+1,t);     //对右区间递归排序}
}//4. 快速排序辅助函数,对外同其他算法统一接口,内部调用递归的快速排序
void QuickSort(RecType R[],int n)
{QuickSortR(R, 0, n-1);
}//5. 直接选择排序
void SelectSort(RecType R[],int n)
{int i,j,k;RecType temp;for (i=0; i<n-1; i++)           //做第i趟排序{k=i;for (j=i+1; j<n; j++)   //在当前无序区R[i..n-1]中选key最小的R[k]if (R[j].key<R[k].key)k=j;            //k记下目前找到的最小关键字所在的位置if (k!=i)               //交换R[i]和R[k]{temp=R[i];R[i]=R[k];R[k]=temp;}}
}//6. 堆排序辅助之——调整堆
void sift(RecType R[],int low,int high)
{int i=low,j=2*i;                        //R[j]是R[i]的左孩子RecType temp=R[i];while (j<=high){if (j<high && R[j].key<R[j+1].key)  //若右孩子较大,把j指向右孩子j++;                                //变为2i+1if (temp.key<R[j].key){R[i]=R[j];                          //将R[j]调整到双亲结点位置上i=j;                                //修改i和j值,以便继续向下筛选j=2*i;}else break;                             //筛选结束}R[i]=temp;                                  //被筛选结点的值放入最终位置
}//6. 堆排序
void HeapSort(RecType R[],int n)
{int i;RecType temp;for (i=n/2; i>=1; i--) //循环建立初始堆sift(R,i,n);for (i=n; i>=2; i--) //进行n-1次循环,完成推排序{temp=R[1];       //将第一个元素同当前区间内R[1]对换R[1]=R[i];R[i]=temp;sift(R,1,i-1);   //筛选R[1]结点,得到i-1个结点的堆}
}//7.归并排序辅助1——合并有序表
void Merge(RecType R[],int low,int mid,int high)
{RecType *R1;int i=low,j=mid+1,k=0; //k是R1的下标,i、j分别为第1、2段的下标R1=(RecType *)malloc((high-low+1)*sizeof(RecType));  //动态分配空间while (i<=mid && j<=high)       //在第1段和第2段均未扫描完时循环if (R[i].key<=R[j].key)     //将第1段中的记录放入R1中{R1[k]=R[i];i++;k++;}else                            //将第2段中的记录放入R1中{R1[k]=R[j];j++;k++;}while (i<=mid)                      //将第1段余下部分复制到R1{R1[k]=R[i];i++;k++;}while (j<=high)                 //将第2段余下部分复制到R1{R1[k]=R[j];j++;k++;}for (k=0,i=low; i<=high; k++,i++) //将R1复制回R中R[i]=R1[k];
}//7. 归并排序辅助2——一趟归并
void MergePass(RecType R[],int length,int n)    //对整个数序进行一趟归并
{int i;for (i=0; i+2*length-1<n; i=i+2*length)     //归并length长的两相邻子表Merge(R,i,i+length-1,i+2*length-1);if (i+length-1<n)                       //余下两个子表,后者长度小于lengthMerge(R,i,i+length-1,n-1);          //归并这两个子表
}//7. 归并排序
void MergeSort(RecType R[],int n)           //自底向上的二路归并算法
{int length;for (length=1; length<n; length=2*length) //进行log2n趟归并MergePass(R,length,n);
}//以下基数排序,为了统一测试有改造
//8. 基数排序的辅助函数,创建基数排序用的链表
void CreateLink(RadixRecType *&p,RecType R[],int n)   //采用后插法产生链表
{int i;RadixRecType *s,*t;for (i=0; i<n; i++){s=(RadixRecType *)malloc(sizeof(RadixRecType));s->data = R[i].key;if (i==0){p=s;t=s;}else{t->next=s;t=s;}}t->next=NULL;
}//8. 基数排序的辅助函数,释放基数排序用的链表
void DestoryLink(RadixRecType *&p)
{RadixRecType *q;while(p!=NULL){q=p->next;free(p);p=q;}return;
}//8. 实现基数排序:*p为待排序序列链表指针,基数R和关键字位数D已经作为符号常量定义好
void RadixSort(RadixRecType *&p)
{RadixRecType *head[Radix],*tail[Radix],*t; //定义各链队的首尾指针int i,j,k;unsigned int d1, d2=1;   //用于分离出第i位数字,见下面的注释for (i=1; i<=Digits; i++)                  //从低位到高位循环{//分离出倒数第i位数字,先通过对d1=10^i取余,得到其后i位,再通过整除d2=10^(i-1)得到第i位//例如,分离出倒数第1位,即个位数,先对d1=10取余,再整除d2=1//再例如,分离出倒数第2位,即十位数,先对d1=100取余,再整除d2=10//循环之前,d2已经初始化为1,在这一层循环末增加10倍//下面根据d2,得到d1的值d1=d2*10;for (j=0; j<Radix; j++)                 //初始化各链队首、尾指针head[j]=tail[j]=NULL;while (p!=NULL)                 //对于原链表中每个结点循环{k=(p->data%d1)/d2;           //分离出第i位数字kif (head[k]==NULL)          //进行分配{head[k]=p;tail[k]=p;}else{tail[k]->next=p;tail[k]=p;}p=p->next;                  //取下一个待排序的元素}p=NULL;                         //重新用p来收集所有结点for (j=0; j<Radix; j++)             //对于每一个链队循环if (head[j]!=NULL)          //进行收集{if (p==NULL){p=head[j];t=tail[j];}else{t->next=head[j];t=tail[j];}}t->next=NULL;                   //最后一个结点的next域置NULL//下面更新用于分离出第i位数字的d2d2*=10;}
}

这篇关于数据结构实践——大数据集上排序算法性能的体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768835

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言