ICLR 2024|ReLU激活函数的反击,稀疏性仍然是提升LLM效率的利器

2024-03-02 19:04

本文主要是介绍ICLR 2024|ReLU激活函数的反击,稀疏性仍然是提升LLM效率的利器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

b771e5a9faeb496392413e44c5fd0a6a.png

 

论文题目: ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models
论文链接: https://arxiv.org/abs/2310.04564

参数规模超过十亿(1B)的大型语言模型(LLM)已经彻底改变了现阶段人工智能领域的研究风向。越来越多的工业和学术研究者开始研究LLM领域中的难题,例如如何降低LLM在推理过程中的计算需求。

本文介绍一篇苹果发表在人工智能顶会ICLR 2024上的文章,本文针对LLM中激活函数对LLM推理效率的影响展开了研究,目前LLM社区中通常使用GELU和SiLU来作为替代激活函数,它们在某些情况下可以提高LLM的预测准确率。但从节省模型计算量的角度考虑,本文作者认为,经典的ReLU函数对模型收敛和性能的影响可以忽略不计,同时可以显着减少计算和权重IO量。因此作者主张在LLM社区重新评估ReLU的地位(尽可能多的使用ReLU)。

此外,作者还探索了一种基于ReLU的LLM稀疏模式,该模式可以对已激活的神经元进行重新利用来生成出新的高效token。综合这些发现和设计,本文实现了基于ReLU的高效LLM计算方案,相比其他激活函数,将LLM的推理计算量大幅减少三倍

01. 引言

为了提高LLM的推理效率,研究者们提出了包括量化、推测解码、剪枝和权重稀疏化等多种加速手段。通过引入激活函数的稀疏性可以在LLM的精度和计算量之间实现非常可观的效率平衡,尤其是在GPU等现代硬件上。在传统神经网络中经常使用的ReLU激活函数被认为可以有效诱导模型进行稀疏激活,来提高网络的推理效率。本文作者对OPT模型(激活函数使用ReLU)中每层神经元的激活稀疏度进行了测量,如下图(a)所示,所有层的稀疏度均超过90%,这种稀疏度可以在模型训练时GPU 和 CPU 之间的权重IO节省大量时间。对于 OPT 模型,这种稀疏性将推理所需的计算量从每个token的 6.6G FLOPS 减少到 4.5G FLOPS,从而节省了 32% 的计算量(如下图c所示)。

ee2ea9eeae03469dbe5f8cdd4ee370c6.png

 

02. 激活函数对模型综合性能的影响

0166465c45644be6aad2a6b548000181.png

 

上图第二行显示了LLM在使用不同激活函数时的性能指标曲线。可以看出,当使用不同的激活函数时,模型的性能非常相似。这一现象与LLM缩放定律[2]给出的结论一致,即LLM的性能很大程度上取决于计算和数据,而不是架构细节。但是不同激活函数带来的激活稀疏性水平明显不同。上图c反映了模型中所有层的平均稀疏度级别,当激活函数从SiLU过渡到ReLU(增加了门控权重  )时,模型的稀疏性也在增加。

03. ReLU充当预训练LLM的润滑剂

通过上一节的实验作者已经发现,LLM的预测准确率并不依赖于激活函数的类型。但是现有大多数LLM均是使用ReLU之外的激活函数进行训练,因此为了在推理阶段使这些LLM结合ReLU激活的计算优势,作者进行了各种架构改进实验。例如将ReLU合并到预训练LLM中,作者将这一过程称为对LLM的“再润滑”(ReLUfication)。将ReLU插入到预训练LLM中,模型在微调过程中可能快速的恢复性能,同时提高推理时的稀疏性,可谓是一举两得。

3.1 一阶段插入ReLU激活

ReLUfication过程的示意图如下图所示,这个过程可以分为多个阶段完成,一阶段是使用ReLU替换到LLM中的其他激活函数,例如在Falcon 和 Llama分别替换 GELU 和 SiLU。由于 OPT 模型已经使用 ReLU 激活,因此这里保持不变。

32d6ad8ce12e49bfba234ef95a62e7b5.png

 

随后作者将替换ReLU后的模型在RefinedWeb数据集上进行微调,下图分别展示了Falcon 和 Llama在替换后模型稀疏性的对比效果。

d76ee576b8ee45ef8304a12752e59ece.png

 

除了激活稀疏性的显着改善之外,作者还观察到了其他有趣的现象,如下图所示,作者测量了Falcon 和 Llama 预训练模型的预激活分布情况,可以看出,在微调阶段,这个分布本身的变化并不明显,这可能表明网络的预测倾向在引入稀疏性时并不会改变,具有良好的稳定性

defd4bcd4331497484a1b03883443c52.png

 

下图展示了模型的预测准确率随着ReLU的不断微调的变化情况,模型在微调阶段很快恢复了其原本的性能,其中Llama(绿色线条)完美的达到了ReLU插入之前的预测准确率

3.2 二阶段的进一步稀疏化

在一阶段的ReLU融化中,作者插入了ReLU来替代其他激活函数,这会导致模型down projection层的输入变稀疏,稀疏程度大约占总计算量的30%。然而,除了down projection层之外,transformer的解码器层中还有其他复杂的矩阵向量乘法,例如注意力层中的QKV projection,这些矩阵向量乘法大约占总计算量的约 55%,因此对这一部分进行二次稀疏也非常重要。作者发现,在现代transformer层中,注意力层和 FFN 层的输入都来自归一化层(LayerNorm),这些层可以被视为 MLP 的一种特定形式,因为它们并不是学习参数,而是学习如何对输入数据进行缩放,因此作者将ReLU接在归一化层之后来进行二阶段的稀疏激活

6cf78048ff2d4847a30e1b67a5ad6282.png

 

下表展示了ReLUfication调整后,模型的稀疏程度和zero-shot预测精度。其中模型的稀疏性可以分为三种类型:up projection、down projection和QKV projection。可以看到,对LLM的不同部位进行稀疏化后,模型的zero-shot精度变化并不明显,但是计算量的差异很大

e2352ee828da4f4fa0a62f1af8555077.png

 

为了综合评估激活函数对LLM上下文学习能力的影响,作者在下表展示了模型在大规模多任务语言理解(MMLU)任务中的性能,结果表明,当使用不同的激活函数和微调策略来增强原始 LLM 时,模型的zero-shot性能也不会发生显着变化。此外,在相同的FLOPS情况下,参数规模较大但经过ReLU简化后的模型相比原始较小模型的性能更好。总体而言,本文提出的ReLUfication可以降低LLM各个阶段的推理FLOPS,同时保持各种任务的同等性能。

04. 聚合稀疏性:重用已激活的神经元

3189c35c53914cd6a87bf0a6fd7b4886.png

 

3ed0ea39df8347f4912eedecbfd760d2.png

 

可以看出,重用激活方式对模型带来的困惑负面影响几乎可以忽略不记,其曲线与基线方法基本吻合,同时在推理加速方面也远远优于随机稀疏性。

05. 总结

本文对LLM中使用的激活函数进行了大规模的研究,作者发现,在LLM预训练和微调期间激活函数的选择不会对性能产生显着影响,而使用经典的 ReLU 可以为LLM提供稀疏性和更高效的推理效率。考虑到现有流行的LLM(例如Llama和Falcon)均已使用非ReLU激活函数进行预训练,从头对它们进行训练耗费的代价太大,因而作者提出了一种将ReLU激活函数合并到现有预训练LLM中的方法,被称为ReLUfication,ReLUfication具有即插即用的特点,可以在微调阶段快速将模型恢复到与原有状态相当的性能,同时带来显著的推理效率增益。作者在广泛的基准实验(包括zero-shot预测和上下文理解)上证明,在LLM中使用稀疏性激活函数具有强大的潜力。

参考

[1] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[2] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffre Wu, and Dario Amodei. Scaling laws for neural language models. CoRR, abs/2001.08361, 2020.


  关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

这篇关于ICLR 2024|ReLU激活函数的反击,稀疏性仍然是提升LLM效率的利器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767116

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

2024网安周今日开幕,亚信安全亮相30城

2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席2024年国家网络安全宣传周开幕式和主论坛,并将通过线下宣讲、创意科普、成果展示等多种形式,让广大民众看得懂、记得住安全知识,同时还