【机器学习实战1】泰坦尼克号:灾难中的机器学习(一)数据预处理

2024-03-01 12:52

本文主要是介绍【机器学习实战1】泰坦尼克号:灾难中的机器学习(一)数据预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🌸博主主页:@釉色清风
  • 🌸文章专栏:机器学习实战
  • 🌸今日语录:不要一直责怪过去的自己,她曾经站在雾里也很迷茫。

🌼实战项目简介

本次项目是kaggle上的一个入门比赛 :Titanic——Machine Learning from Disaster(泰坦尼克号——灾难中的机器学习),比赛选择了泰坦尼克号作为背景,并提供了样本数据以及测试数据,要求我们使用机器学习创建一个模型,预测哪些乘客在泰坦尼克号沉船中幸存下来。

🌼数据文件说明

🌻泰坦尼克号项目页面:Titanic——Machine Learning from Disaster

🌻可下载的Data页面:


可下载包括三个文件:

  • train.csv:训练数据
  • test.csv:测试数据
  • gender_submission.csv :提交结果案例

🌻数据变量说明

下载好文件,可知,每个乘客有12个属性。

  • Passengerld :乘客唯一识别ID
  • Survived:是否存活,0为否,1为是
  • Pclass :客舱等级,分为1、2、3等级,与英国的阶级分层有关
  • Name:姓名
  • Sex:性别
  • Age:年龄
  • SibSp:泰坦尼克号上的兄弟姐妹/配偶数量(与该乘客一起旅行的)
  • Parch:泰坦尼克号上的父母/孩子数量(与该乘客一起旅行的)
  • Ticket:船票号
  • Fare:船票价格
  • Cabin:客舱编号
  • Embarked:上船的港口编号(S=Southampton,英国南安普顿[启航点];C=Cherbourg,法国瑟堡市[途径点];Q=Quenstown,爱尔兰昆市[途径点])

🌼数据预处理

数据的质量直接决定模型预测的结果。所以,在进行训练模型之前,我们必须要进行数据清洗。
接下来我们使用Jupyter Notebook来进行接下来的数据描述和预处理。

🌻读入数据

首先,我们导入pandas库,它是python中进行数据分析和处理的一个库。然后我们读入我们的训练数据集。

🌾导入数据

🌾打印数据的前几行


默认是打印前五行,如下:

🌻做简单的统计分析


统计特性如下:

统计有

  • count: 这一列的数量(只要不是缺失值就被统计)
  • mean:平均值
  • std : 方差
  • min:最小值
  • 25%:下四分位数
  • 50%:中位数
  • 75%:上四分位数
  • max: 最大值

通过大致的浏览,我们可以看到,Age列含有缺失值。

🌻对[Age]列缺失值进行填充

一般对于缺失值的填充用到均值、中位数等。在这里,我们采用均值对Age列的缺失值进行填充。在填充缺失值这里我们用到了fillna函数。

🌾fillna函数

  • fillna是一个用于填充缺失值的函数,它是pandas库中的一个方法。
  • fillna函数的基本语法如下:
  • DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)

🌾对[Age]列的缺失值采用均值填充法填充


填充完之后,我们再次describe。

如下图:

🌻将字符型转化为数值型数据


我们知道,计算机是可以处理数字的,但是无法处理字符。为了方便统计,我们将性别[Sex]和上船港口编号[Embarked]这两列列进行处理。

🌾对[Age]列进行替换


我们在这里用到DataFrame的loc属性:

  • 在Python中,loc是一个用于数据框(DataFrame)的属性,它用于选择满足特定条件的行。loc可以通过标签或布尔数组来选择行。
  • 常见的用法有:
    1. 使用标签选择行:
      df.loc[label]
      2.使用布尔数组选择行:
      df.loc[bool_array]
      3.使用标签和列选择行和列:
      df.loc[start_label:end_label, start_column:end_column]

这里我们则采用3进行替换:

🌾对[Embarked]列进行替换


替换:

然后我们进行统计新描述,发现中的数量889,存在从缺失值。

这时,我们对三个登船地点进行统计计数。发现0是最多的,即在S处登船的人最多。

所以对于缺失值,我们将用0进行填充。

这篇关于【机器学习实战1】泰坦尼克号:灾难中的机器学习(一)数据预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/762504

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑