以赛促教以赛促学:和鲸赋能暨大经管落实赛训一体,培养应用型数据人才!

本文主要是介绍以赛促教以赛促学:和鲸赋能暨大经管落实赛训一体,培养应用型数据人才!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着新一轮科技革命与产业变革的加速演进,数据思维、数据技术正深度浸入各行各业,在商科经管领域,数据分析可被广泛应用于市场营销、供应链管理、财务分析等工作,拥有相关学科背景的应用型数据科学人才备受重视。

然而,在奋力推进“大数据 + 商科”人才培养的过程中,各院校的跨学科课堂上却不断浮现种种卡脖子问题。从学生视角出发,由于缺乏数理、编程基础,面对数据科学“天生”便具有畏难甚至抵触情绪,难以快速上手加之行业了解不足、应用经验有限,理论考核过后,并不能真正以课堂所学解决实际问题

暨南大学经济管理实验教学中心成立于 2008 年,属于国家级实验教学示范中心,负责暨大经济、管理、旅游、创业、公管共五个学院中与实验、实训、实习相关的教学任务。为持续探索以大数据分析与人工智能为技术支撑的虚拟仿真实验教学新模式,中心携手和鲸开展《商业大数据分析》课程的教学工作,协同和鲸 ModelWhale 平台、和鲸社区资源、和鲸办赛服务全方位解决上述问题

作为财务管理、会计学、工商管理、市场营销等专业的必修学分,每一学年,ModelWhale 均为该课程近 400 位暨大师生提供开箱即用的分析实践平台与化繁为简的教学管理工具,同时社区以海量可供复现的数据、案例资源,一站式支持课堂内外的实训环节。

而为更充分践行“以赛促教、以赛促学、赛训一体”的先进理念、在延拓课堂形式的同时激励学生动手实践并产出完整的数据分析作品,和鲸协助暨大经济管理实验教学中心、数字商科实验室举办首届“暨南大学数字商业挑战赛”,要求选修《商业大数据分析》的学生全员参与,竞赛成绩与课程绩点直接相关。

和鲸团队为挑战赛设计赛题并援引社区资源准备赛题数据,同时运营赛事社群;ModelWhale 平台为参赛者提供统一的在线开发环境与充足的计算存储资源。挑战赛分设的四道赛题主题涵盖中美经济、工业生产、企业财务、零售快消,学生作为选手组队并择一参赛,针对所提交的完整数据分析报告及分析代码,挑战赛评审以当堂答辩的形式实现,由任课教师依据技术选型、数据丰度、展示效果等多个维度做出打分。

最终,首届“暨南大学数字商业挑战赛”圆满落地,大部分学生所完成的参赛作品质量远超预期:

聚焦中美经济的郭同学、邓同学、陈同学通过使用回归、聚类、交叉分析等多种数据处理技术,不仅从多个角度对中美经济现状进行了比较,同时分析成因并对未来趋势做出了合理预测;

而薛同学、苏同学、刘同学则关注我国高耗能产品进出口与工业产品产量,对两者关系进行了描述性、探索性分析,以数据为本,针对相关领域提出优化产业结构、提升生产效率、拓展国际市场、加强政策引导的策略建议……

对于四份最为优秀的参赛作品,和鲸协助选手将其赛果上线至和鲸社区,欢迎广大师生进入社区“优秀参赛作品专区”并使用 ModelWhale 进行作品的复现、学习。

赛后,和鲸面向课程师生进行了详尽的调研访谈以获取最真实的参赛评价。

中心副主任、课程任课教师汤胤教授指出,“教育,并不等同于教学,我们应为教育引入更多形式,激励学生将知识应用于实际。和鲸协助我们中心落实赛训一体的方针,过程中引入了平台工具和许多案例资源,不仅对教育本身有促进作用,也为我们教师大幅减负。”

多位同学对挑战赛的意义与实际体验给予高度认可。谈及参赛收获,焦同学认为本次挑战赛使自己对于数据分析的整体流程形成了相对完整的认识,真实数据与贴合实际的赛题也使自己的编程能力得到了很好的锻炼;唐同学则表示挑战赛不仅提供了优质的动手实践机会,组队参赛也使其再次领略到协同共赢的重要性,此外,寻找作品参考也让唐同学感知到了社区案例的高质量,ModelWhale 与和鲸社区均会成为她日后学习工作的好帮手

本次“暨南大学数字商业挑战赛”的圆满收官,不仅再次论证了“以赛促教、以赛促学、赛训一体”理念的先进性,更是暨大经济管理实验教学中心对于学生“创新、创意、创业”能力培养模式的又一次成功落地,而和鲸落实中心“虚拟仿真实验 + 校企合作实践” 的改革方针,协助其顺利构建并完善了应用型数据科学人才培养的体系与相关方法论

集成功能强大的数据科学协同平台 ModelWhale 与拥有海量数据案例资源的实践社区,辅以成熟的办赛经验与比赛模块,依据 OBE 成果导向的教育模式,目前,和鲸已成功构建出最完备的产品 + 资源 + 服务体系,并获得了从双一流到普通高校客户的广泛好评。

校内赛承办、应用型数据科学人才培养体系建设,任何相关需求,欢迎您点击【联系产品顾问(移动端跳转)】与和鲸展开交流(咨询备注“暨大校内赛”),或点击右侧链接免费【试用 ModelWhale 团队版】(获赠 CPU、GPU 算力)。

这篇关于以赛促教以赛促学:和鲸赋能暨大经管落实赛训一体,培养应用型数据人才!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758338

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动