算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析)

2024-02-29 05:12

本文主要是介绍算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之回文串问题

  • 01.回文子串
  • 02.最长回文子串
  • 03.分割回文串 IV
  • 04.分割回文串 II
  • 05.最长回文子序列
  • 06.让字符串成为回文串的最少插入次数

01.回文子串

题目链接:https://leetcode.cn/problems/palindromic-substrings/

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

示例 2:

输入:s = "aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:

  • 1 <= s.length <= 1000
  • s 由小写英文字母组成

思路

  1. 预处理回文信息: 创建一个 dp 表,其中 dp[i][j] 表示字符串 s 中子串 s[i:j+1] 是否是回文串。

  2. 状态转移方程: 对于回文串,分析两头的元素:

    • 如果 s[i] != s[j],则不可能是回文串,dp[i][j] = 0

    • 如果

      s[i] == s[j]
      

      ,则根据长度分三种情况讨论:

      • 如果长度为 1,即 i == j,则一定是回文串,dp[i][j] = true
      • 如果长度为 2,即 i + 1 == j,则也一定是回文串,dp[i][j] = true
      • 如果长度大于 2,则需要看 [i + 1, j - 1] 区间的子串是否回文,dp[i][j] = dp[i + 1][j - 1]
  3. 初始化: 由于状态转移方程已经考虑了各种情况,无需额外初始化。

  4. 填表顺序: 根据状态转移方程,从下往上填写每一行。

  5. 返回值: 根据状态表达和题目要求,返回 dp 表中 true 的个数。

代码

class Solution {
public:int countSubstrings(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));int sum=0;for(int i=n-1;i>=0;i--){for(int j=i;j<n;j++){if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;if(dp[i][j]) sum++;}}return sum;}
};

02.最长回文子串

题目链接:https://leetcode.cn/problems/longest-palindromic-substring/

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

思路

和上一题思路基本一致,但这里我们要返回字串,所以我们需要在原有算法上标记字串的开始位置和子串的长度。

代码

class Solution {
public:string longestPalindrome(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));int len=1,begin=0;for(int i=n-1;i>=0;--i){for(int j=i;j<n;++j){if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;if(dp[i][j]&&j-i+1>len) len=j-i+1,begin=i;}}return s.substr(begin,len);}
};

03.分割回文串 IV

题目链接:https://leetcode.cn/problems/palindrome-partitioning-iv/

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false

当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串

示例 1:

输入:s = "abcbdd"
输出:true
解释:"abcbdd" = "a" + "bcb" + "dd",三个子字符串都是回文的。

示例 2:

输入:s = "bcbddxy"
输出:false
解释:s 没办法被分割成 3 个回文子字符串。

提示:

  • 3 <= s.length <= 2000
  • s 只包含小写英文字母。

思路

其实这里我们可以依照第一题的解法将所有的子串都进行统计,再遍历计算每个分割位置组成的3个子串是否都符合回文子串即可。

代码

class Solution {
public:bool checkPartitioning(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));for(int i=n-1;i>=0;--i)for(int j=i;j<n;j++)if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;for(int i=1;i<n-1;i++)for(int j=i;j<n-1;++j)if(dp[0][i-1]&&dp[i][j]&&dp[j+1][n-1]) return true;return false;}
};

04.分割回文串 II

题目链接:https://leetcode.cn/problems/palindrome-partitioning-ii/

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。

返回符合要求的 最少分割次数

示例 1:

输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

示例 2:

输入:s = "a"
输出:0

示例 3:

输入:s = "ab"
输出:1

提示:

  • 1 <= s.length <= 2000
  • s 仅由小写英文字母组成

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i] 表示字符串 s[0, i] 区间上的字符串,最少分割的次数。

  2. 状态转移方程: 通常考虑最后一个位置的信息。设 0 <= j <= i,那么可以根据 [j, i] 位置上的子串是否是回文串分成以下两类:

    • 如果 [j, i] 位置上的子串能够构成一个回文串,那么 dp[i] 就等于 [0, j - 1] 区间上最少回文串的个数 + 1,即 dp[i] = dp[j - 1] + 1
    • 如果 [j, i] 位置上的子串不能构成一个回文串,此时 j 位置就不用考虑。

    由于求的是最小值,因此需要循环遍历 j 的取值,取最小值。

  3. 优化: 在状态转移方程中,需要快速判断字符串中的子串是否回文。因此,可以先处理一个 dp 表,其中保存所有子串是否回文的信息。

  4. 初始化: 在循环遍历 j 之前,处理 j == 0 的情况。此时,表示的区间是 [0, i]。如果 [0, i] 区间上的字符串已经是回文串了,最小的回文串就是 1j 往后的值就不用遍历了。为防止在求 min 操作时,0 干扰结果,将表中的值初始化为「无穷大」。

  5. 填表顺序: 从左往右填写。

  6. 返回值: 根据状态表达,返回 dp[n - 1]

代码

class Solution {
public:int minCut(string s) {int n=s.size();vector<vector<bool>> isp(n,vector<bool>(n));for(int i=n-1;i>=0;--i)for(int j=i;j<n;j++)if(s[i]==s[j]) isp[i][j]=i+1<j?isp[i+1][j-1]:true;vector<int> dp(n,INT_MAX);for(int i=0;i<n;++i){if(isp[0][i]) dp[i]=0;else{for(int j=1;j<=i;j++)if(isp[j][i]) dp[i]=min(dp[i],dp[j-1]+1);}}return dp[n-1];}
};

05.最长回文子序列

题目链接:https://leetcode.cn/problems/longest-palindromic-subsequence/

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。 

提示:

  • 1 <= s.length <= 1000
  • s 仅由小写英文字母组成

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i][j] 表示字符串 s[i, j] 区间内的所有子序列中,最长的回文子序列的长度。

  2. 状态转移方程: 回文子序列和回文子串的分析方式一般都是选择这段区域的「左右端点」的字符情况来分析。因为如果一个序列是回文串的话,「去掉首尾两个元素之后依旧是回文串」,「首尾加上两个相同的元素之后也依旧是回文串」。根据首尾元素的不同,分为以下两种情况:

    • s[i] == s[j] 时,[i, j] 区间上的最长回文子序列,应该是 [i + 1, j - 1] 区间内的那个最长回文子序列首尾填上 s[i]s[j],此时 dp[i][j] = dp[i + 1][j - 1] + 2
    • s[i] != s[j] 时,这两个元素就不能同时添加在一个回文串的左右,那么就应该让 s[i] 单独加在一个序列的左边,或者让 s[j] 单独放在一个序列的右边,看看这两种情况下的最大值:
      • 单独加入 s[i] 后的区间在 [i, j - 1],此时最长的回文序列的长度就是 dp[i][j - 1]
      • 单独加入 s[j] 后的区间在 [i + 1, j],此时最长的回文序列的长度就是 dp[i + 1][j]

    取两者的最大值,于是 dp[i][j] = max(dp[i][j - 1], dp[i + 1][j])

  3. 初始化: 需要处理两种边界情况:

    • i == j 时,区间内只有一个字符,此时 dp[i][j] = 1
    • i + 1 == j 时,区间内有两个字符,如果这两个字符相同,dp[i][j] = 2,否则 dp[i][j] = 0

    在填表的时候,可以同步处理第一种边界情况,对于第二种边界情况,dp[i + 1][j - 1] 的值为 0,不会影响最终的结果,因此可以不用考虑。

  4. 填表顺序: 根据「状态转移」,dp[i + 1] 表示下一行的位置,dp[j - 1] 表示前一列的位置。因此填表顺序应该是「从下往上填写每一行」,「每一行从左往右」。

  5. 返回值: 根据「状态表达」,返回 [0, n -1] 区域上的最长回文序列的长度,因此需要返回 dp[0][n - 1]

代码

class Solution {
public:int longestPalindromeSubseq(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;i--){dp[i][i]=1;for(int j=i+1;j<n;j++){if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;else dp[i][j]=max(dp[i+1][j],dp[i][j-1]);}}return dp[0][n-1];}
};

06.让字符串成为回文串的最少插入次数

题目链接:https://leetcode.cn/problems/minimum-insertion-steps-to-make-a-string-palindrome/

给你一个字符串 s ,每一次操作你都可以在字符串的任意位置插入任意字符。

请你返回让 s 成为回文串的 最少操作次数

「回文串」是正读和反读都相同的字符串。

示例 1:

输入:s = "zzazz"
输出:0
解释:字符串 "zzazz" 已经是回文串了,所以不需要做任何插入操作。

示例 2:

输入:s = "mbadm"
输出:2
解释:字符串可变为 "mbdadbm" 或者 "mdbabdm" 。

示例 3:

输入:s = "leetcode"
输出:5
解释:插入 5 个字符后字符串变为 "leetcodocteel" 。

提示:

  • 1 <= s.length <= 500
  • s 中所有字符都是小写字母。

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i][j] 表示字符串 s[i, j] 区域成为回文子串的最少插入次数。
  2. 状态转移方程: 回文子序列和回文子串的分析方式一般都是选择这段区域的「左右端点」的字符情况来分析。因为如果一个序列是回文串的话,「去掉首尾两个元素之后依旧是回文串」,「首尾加上两个相同的元素之后也依旧是回文串」。根据首尾元素的不同,可以分为以下两种情况:
    • s[i] == s[j] 时,[i, j] 区间内成为回文子串的最少插入次数,取决于 [i + 1, j - 1] 区间内成为回文子串的最少插入次数。若 i >= j - 1i == j - 1[i + 1, j - 1] 不构成合法区间),此时只有 1 ~ 2 个相同的字符, [i, j] 区间一定是回文子串,成为回文子串的最少插入次数是 0。此时 dp[i][j] = i >= j - 1 ? 0 : dp[i + 1][j - 1]
    • s[i] != s[j] 时,需要在区间的最右边或最左边插入一个字符,取决于 [i + 1, j][i, j + 1] 区间内成为回文子串的最少插入次数。此时 dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) + 1
  3. 初始化: 根据「状态转移方程」,没有不能递推表达的值,无需初始化。
  4. 填表顺序: 根据「状态转移」,dp[i + 1] 表示下一行的位置,dp[j - 1] 表示前一列的位置。因此填表顺序应该是「从下往上填写每一行」,「每一行从左往右」。
  5. 返回值: 根据「状态表达」,返回 [0, n - 1] 区域上成为回文子串的最少插入次数,因此需要返回 dp[0][n - 1]

代码

class Solution {
public:int minInsertions(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;i--){for(int j=i+1;j<n;j++){if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1];else dp[i][j]=min(dp[i+1][j],dp[i][j-1])+1;}}return dp[0][n-1];}
};

这篇关于算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757669

相关文章

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交