算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析)

2024-02-29 05:12

本文主要是介绍算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之回文串问题

  • 01.回文子串
  • 02.最长回文子串
  • 03.分割回文串 IV
  • 04.分割回文串 II
  • 05.最长回文子序列
  • 06.让字符串成为回文串的最少插入次数

01.回文子串

题目链接:https://leetcode.cn/problems/palindromic-substrings/

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

示例 2:

输入:s = "aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:

  • 1 <= s.length <= 1000
  • s 由小写英文字母组成

思路

  1. 预处理回文信息: 创建一个 dp 表,其中 dp[i][j] 表示字符串 s 中子串 s[i:j+1] 是否是回文串。

  2. 状态转移方程: 对于回文串,分析两头的元素:

    • 如果 s[i] != s[j],则不可能是回文串,dp[i][j] = 0

    • 如果

      s[i] == s[j]
      

      ,则根据长度分三种情况讨论:

      • 如果长度为 1,即 i == j,则一定是回文串,dp[i][j] = true
      • 如果长度为 2,即 i + 1 == j,则也一定是回文串,dp[i][j] = true
      • 如果长度大于 2,则需要看 [i + 1, j - 1] 区间的子串是否回文,dp[i][j] = dp[i + 1][j - 1]
  3. 初始化: 由于状态转移方程已经考虑了各种情况,无需额外初始化。

  4. 填表顺序: 根据状态转移方程,从下往上填写每一行。

  5. 返回值: 根据状态表达和题目要求,返回 dp 表中 true 的个数。

代码

class Solution {
public:int countSubstrings(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));int sum=0;for(int i=n-1;i>=0;i--){for(int j=i;j<n;j++){if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;if(dp[i][j]) sum++;}}return sum;}
};

02.最长回文子串

题目链接:https://leetcode.cn/problems/longest-palindromic-substring/

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

思路

和上一题思路基本一致,但这里我们要返回字串,所以我们需要在原有算法上标记字串的开始位置和子串的长度。

代码

class Solution {
public:string longestPalindrome(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));int len=1,begin=0;for(int i=n-1;i>=0;--i){for(int j=i;j<n;++j){if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;if(dp[i][j]&&j-i+1>len) len=j-i+1,begin=i;}}return s.substr(begin,len);}
};

03.分割回文串 IV

题目链接:https://leetcode.cn/problems/palindrome-partitioning-iv/

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false

当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串

示例 1:

输入:s = "abcbdd"
输出:true
解释:"abcbdd" = "a" + "bcb" + "dd",三个子字符串都是回文的。

示例 2:

输入:s = "bcbddxy"
输出:false
解释:s 没办法被分割成 3 个回文子字符串。

提示:

  • 3 <= s.length <= 2000
  • s 只包含小写英文字母。

思路

其实这里我们可以依照第一题的解法将所有的子串都进行统计,再遍历计算每个分割位置组成的3个子串是否都符合回文子串即可。

代码

class Solution {
public:bool checkPartitioning(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));for(int i=n-1;i>=0;--i)for(int j=i;j<n;j++)if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;for(int i=1;i<n-1;i++)for(int j=i;j<n-1;++j)if(dp[0][i-1]&&dp[i][j]&&dp[j+1][n-1]) return true;return false;}
};

04.分割回文串 II

题目链接:https://leetcode.cn/problems/palindrome-partitioning-ii/

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。

返回符合要求的 最少分割次数

示例 1:

输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

示例 2:

输入:s = "a"
输出:0

示例 3:

输入:s = "ab"
输出:1

提示:

  • 1 <= s.length <= 2000
  • s 仅由小写英文字母组成

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i] 表示字符串 s[0, i] 区间上的字符串,最少分割的次数。

  2. 状态转移方程: 通常考虑最后一个位置的信息。设 0 <= j <= i,那么可以根据 [j, i] 位置上的子串是否是回文串分成以下两类:

    • 如果 [j, i] 位置上的子串能够构成一个回文串,那么 dp[i] 就等于 [0, j - 1] 区间上最少回文串的个数 + 1,即 dp[i] = dp[j - 1] + 1
    • 如果 [j, i] 位置上的子串不能构成一个回文串,此时 j 位置就不用考虑。

    由于求的是最小值,因此需要循环遍历 j 的取值,取最小值。

  3. 优化: 在状态转移方程中,需要快速判断字符串中的子串是否回文。因此,可以先处理一个 dp 表,其中保存所有子串是否回文的信息。

  4. 初始化: 在循环遍历 j 之前,处理 j == 0 的情况。此时,表示的区间是 [0, i]。如果 [0, i] 区间上的字符串已经是回文串了,最小的回文串就是 1j 往后的值就不用遍历了。为防止在求 min 操作时,0 干扰结果,将表中的值初始化为「无穷大」。

  5. 填表顺序: 从左往右填写。

  6. 返回值: 根据状态表达,返回 dp[n - 1]

代码

class Solution {
public:int minCut(string s) {int n=s.size();vector<vector<bool>> isp(n,vector<bool>(n));for(int i=n-1;i>=0;--i)for(int j=i;j<n;j++)if(s[i]==s[j]) isp[i][j]=i+1<j?isp[i+1][j-1]:true;vector<int> dp(n,INT_MAX);for(int i=0;i<n;++i){if(isp[0][i]) dp[i]=0;else{for(int j=1;j<=i;j++)if(isp[j][i]) dp[i]=min(dp[i],dp[j-1]+1);}}return dp[n-1];}
};

05.最长回文子序列

题目链接:https://leetcode.cn/problems/longest-palindromic-subsequence/

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。 

提示:

  • 1 <= s.length <= 1000
  • s 仅由小写英文字母组成

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i][j] 表示字符串 s[i, j] 区间内的所有子序列中,最长的回文子序列的长度。

  2. 状态转移方程: 回文子序列和回文子串的分析方式一般都是选择这段区域的「左右端点」的字符情况来分析。因为如果一个序列是回文串的话,「去掉首尾两个元素之后依旧是回文串」,「首尾加上两个相同的元素之后也依旧是回文串」。根据首尾元素的不同,分为以下两种情况:

    • s[i] == s[j] 时,[i, j] 区间上的最长回文子序列,应该是 [i + 1, j - 1] 区间内的那个最长回文子序列首尾填上 s[i]s[j],此时 dp[i][j] = dp[i + 1][j - 1] + 2
    • s[i] != s[j] 时,这两个元素就不能同时添加在一个回文串的左右,那么就应该让 s[i] 单独加在一个序列的左边,或者让 s[j] 单独放在一个序列的右边,看看这两种情况下的最大值:
      • 单独加入 s[i] 后的区间在 [i, j - 1],此时最长的回文序列的长度就是 dp[i][j - 1]
      • 单独加入 s[j] 后的区间在 [i + 1, j],此时最长的回文序列的长度就是 dp[i + 1][j]

    取两者的最大值,于是 dp[i][j] = max(dp[i][j - 1], dp[i + 1][j])

  3. 初始化: 需要处理两种边界情况:

    • i == j 时,区间内只有一个字符,此时 dp[i][j] = 1
    • i + 1 == j 时,区间内有两个字符,如果这两个字符相同,dp[i][j] = 2,否则 dp[i][j] = 0

    在填表的时候,可以同步处理第一种边界情况,对于第二种边界情况,dp[i + 1][j - 1] 的值为 0,不会影响最终的结果,因此可以不用考虑。

  4. 填表顺序: 根据「状态转移」,dp[i + 1] 表示下一行的位置,dp[j - 1] 表示前一列的位置。因此填表顺序应该是「从下往上填写每一行」,「每一行从左往右」。

  5. 返回值: 根据「状态表达」,返回 [0, n -1] 区域上的最长回文序列的长度,因此需要返回 dp[0][n - 1]

代码

class Solution {
public:int longestPalindromeSubseq(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;i--){dp[i][i]=1;for(int j=i+1;j<n;j++){if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;else dp[i][j]=max(dp[i+1][j],dp[i][j-1]);}}return dp[0][n-1];}
};

06.让字符串成为回文串的最少插入次数

题目链接:https://leetcode.cn/problems/minimum-insertion-steps-to-make-a-string-palindrome/

给你一个字符串 s ,每一次操作你都可以在字符串的任意位置插入任意字符。

请你返回让 s 成为回文串的 最少操作次数

「回文串」是正读和反读都相同的字符串。

示例 1:

输入:s = "zzazz"
输出:0
解释:字符串 "zzazz" 已经是回文串了,所以不需要做任何插入操作。

示例 2:

输入:s = "mbadm"
输出:2
解释:字符串可变为 "mbdadbm" 或者 "mdbabdm" 。

示例 3:

输入:s = "leetcode"
输出:5
解释:插入 5 个字符后字符串变为 "leetcodocteel" 。

提示:

  • 1 <= s.length <= 500
  • s 中所有字符都是小写字母。

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i][j] 表示字符串 s[i, j] 区域成为回文子串的最少插入次数。
  2. 状态转移方程: 回文子序列和回文子串的分析方式一般都是选择这段区域的「左右端点」的字符情况来分析。因为如果一个序列是回文串的话,「去掉首尾两个元素之后依旧是回文串」,「首尾加上两个相同的元素之后也依旧是回文串」。根据首尾元素的不同,可以分为以下两种情况:
    • s[i] == s[j] 时,[i, j] 区间内成为回文子串的最少插入次数,取决于 [i + 1, j - 1] 区间内成为回文子串的最少插入次数。若 i >= j - 1i == j - 1[i + 1, j - 1] 不构成合法区间),此时只有 1 ~ 2 个相同的字符, [i, j] 区间一定是回文子串,成为回文子串的最少插入次数是 0。此时 dp[i][j] = i >= j - 1 ? 0 : dp[i + 1][j - 1]
    • s[i] != s[j] 时,需要在区间的最右边或最左边插入一个字符,取决于 [i + 1, j][i, j + 1] 区间内成为回文子串的最少插入次数。此时 dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) + 1
  3. 初始化: 根据「状态转移方程」,没有不能递推表达的值,无需初始化。
  4. 填表顺序: 根据「状态转移」,dp[i + 1] 表示下一行的位置,dp[j - 1] 表示前一列的位置。因此填表顺序应该是「从下往上填写每一行」,「每一行从左往右」。
  5. 返回值: 根据「状态表达」,返回 [0, n - 1] 区域上成为回文子串的最少插入次数,因此需要返回 dp[0][n - 1]

代码

class Solution {
public:int minInsertions(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;i--){for(int j=i+1;j<n;j++){if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1];else dp[i][j]=min(dp[i+1][j],dp[i][j-1])+1;}}return dp[0][n-1];}
};

这篇关于算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757669

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解