算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析)

本文主要是介绍算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之子序列问题

  • 01.最长定差子序列
  • 02.最长的斐波那契子序列的长度
  • 03.最长等差数列
  • 04.等差数列划分 II - 子序列

01.最长定差子序列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence-of-given-difference/

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

示例 1:

输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。

示例 2:

输入:arr = [1,3,5,7], difference = 1
输出:1
解释:最长的等差子序列是任意单个元素。

示例 3:

输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2
输出:4
解释:最长的等差子序列是 [7,5,3,1]。 

提示:

  • 1 <= arr.length <= 105
  • -104 <= arr[i], difference <= 104

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i] 表示以第 i 个位置的元素为结尾的所有子序列中,最长的等差子序列的长度。
  2. 状态转移方程: 对于 dp[i],上一个定差子序列的取值定为 arr[i] - difference。只要找到以上一个数为结尾的定差子序列长度的 dp[arr[i] - difference],然后加上 1,就是以 i 为结尾的定差子序列的长度。这里可以使用哈希表进行优化,将元素和 dp[j] 绑定,放入哈希表中。
  3. 初始化: 刚开始的时候,需要把第一个元素放进哈希表中,即 hash[arr[0]] = 1
  4. 填表顺序: 根据状态转移方程,填表顺序是从左往右。
  5. 返回值: 根据状态表达,返回整个 dp 数组中的最大值。

代码

class Solution {
public:int longestSubsequence(vector<int>& arr, int difference) {unordered_map<int,int> hash;hash[arr[0]]=1;int ret=1;for(int i=1;i<arr.size();i++){hash[arr[i]]=hash[arr[i]-difference]+1;ret=max(ret,hash[arr[i]]);}return ret;}
};

02.最长的斐波那契子序列的长度

题目链接:https://leetcode.cn/problems/length-of-longest-fibonacci-subsequence/

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8][3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。

示例 2:

输入: arr = [1,3,7,11,12,14,18]
输出: 3
解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。

提示:

  • 3 <= arr.length <= 1000
  • 1 <= arr[i] < arr[i + 1] <= 10^9

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[j][i] 表示以第 j 位置以及第 i 位置的元素为结尾的所有的子序列中,最长的斐波那契子序列的长度。
  2. 状态转移方程:nums[j] = bnums[i] = c,那么这个序列的前一个元素就是 a = c - b。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么 dp[j][i] = dp[k][j] + 1
    • 如果 a 存在,但是 b < a < c,那么 dp[j][i] = 2
    • 如果 a 不存在,那么 dp[j][i] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标,可以在填表之前,将所有的「元素 + 下标」绑定在一起,放到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定最后一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 返回 dp 表中的最大值 ret。但是 ret 可能小于 3,小于 3 说明不存在,需要判断一下。

代码

class Solution {
public:int lenLongestFibSubseq(vector<int>& arr) {int n=arr.size();unordered_map<int,int> hash;for(int i=0;i<n;i++) hash[arr[i]]=i;vector<vector<int>> dp(n,vector<int>(n,2));int ret=2;for(int i=2;i<n;++i){for(int j=1;j<i;j++){int x=arr[i]-arr[j];if(x<arr[j]&&hash.count(x))dp[j][i] = dp[hash[x]][j]+1;ret = max(ret,dp[j][i]);}}return ret<3?0:ret;}
};

03.最长等差数列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence/

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]( 0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。 

提示:

  • 2 <= nums.length <= 1000
  • 0 <= nums[i] <= 500

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,最长的等差序列的长度。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么我们需要以 k 位置以及 i 位置元素为结尾的最长等差序列的长度,然后再加上 j 位置的元素即可。于是 dp[i][j] = dp[k][i] + 1。这里因为会有许多个 k,我们仅需离 i 最近的 k 即可。因此任何最长的都可以以 k 为结尾;
    • 如果 a 存在,但是 b < a < c,那么 dp[i][j] = 2
    • 如果 a 不存在,那么 dp[i][j] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。可以一边动态规划,一边保存最近的元素的下标,不用保存下标数组。遍历的时候,先固定倒数第二个数,再遍历倒数第一个数。这样可以在 i 使用完时候,将 nums[i] 扔到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定倒数第二个数;
    • 然后枚举倒数第一个数。
  6. 返回值: 返回 dp 表中的最大值。

代码

class Solution {
public:int longestArithSeqLength(vector<int>& nums) {unordered_map<int,int> hash;hash[nums[0]]=0;int n=nums.size();vector<vector<int>> dp(n,vector<int>(n,2));int ret=2;for(int i=1;i<n;i++){for(int j=i+1;j<n;j++){int x=2*nums[i]-nums[j];if(hash.count(x)) dp[i][j] = dp[hash[x]][i] + 1;ret=max(ret,dp[i][j]);}hash[nums[i]]=i;}return ret;}
};

04.等差数列划分 II - 子序列

题目链接:https://leetcode.cn/problems/arithmetic-slices-ii-subsequence/

给你一个整数数组 nums ,返回 nums 中所有 等差子序列 的数目。

如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。

  • 例如,[1, 3, 5, 7, 9][7, 7, 7, 7][3, -1, -5, -9] 都是等差序列。
  • 再例如,[1, 1, 2, 5, 7] 不是等差序列。

数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。

  • 例如,[2,5,10][1,2,1,***2***,4,1,***5\***,***10***] 的一个子序列。

题目数据保证答案是一个 32-bit 整数

示例 1:

输入:nums = [2,4,6,8,10]
输出:7
解释:所有的等差子序列为:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]

示例 2:

输入:nums = [7,7,7,7,7]
输出:16
解释:数组中的任意子序列都是等差子序列。

提示:

  • 1 <= nums.length <= 1000
  • -231 <= nums[i] <= 231 - 1

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,等差子序列的个数。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么以 k 元素以及 i 元素结尾的等差序列的个数为 dp[k][i],在这些子序列的后面加上 j 位置的元素依旧是等差序列。但是这里会多出来一个以 k, i, j 位置的元素组成的新的等差序列,因此 dp[i][j] += dp[k][i] + 1
    • 因为 a 可能有很多个,需要全部累加起来。
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。因此在 dp 之前,将所有元素和下标数组绑定在一起,放到哈希表中。这里保存下标数组是因为需要统计个数。
  4. 初始化: 刚开始是没有等差数列的,因此初始化 dp 表为 0
  5. 填表顺序:
    • 先固定倒数第一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 统计所有的等差子序列,返回 dp 表中所有元素的和。

代码

class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n=nums.size();unordered_map<long long,vector<int>> hash;for(int i=0;i<n;i++) hash[nums[i]].push_back(i);vector<vector<int>> dp(n,vector<int>(n));int sum=0;for(int j=2;j<n;j++){for(int i=1;i<j;i++){long long x=(long long)nums[i]*2-nums[j];if(hash.count(x)) for(int& k:hash[x])if(k<i) dp[i][j]+=dp[k][i]+1;sum+=dp[i][j];}}return sum;}
};

这篇关于算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757524

相关文章

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交