算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析)

本文主要是介绍算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之子序列问题

  • 01.最长定差子序列
  • 02.最长的斐波那契子序列的长度
  • 03.最长等差数列
  • 04.等差数列划分 II - 子序列

01.最长定差子序列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence-of-given-difference/

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

示例 1:

输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。

示例 2:

输入:arr = [1,3,5,7], difference = 1
输出:1
解释:最长的等差子序列是任意单个元素。

示例 3:

输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2
输出:4
解释:最长的等差子序列是 [7,5,3,1]。 

提示:

  • 1 <= arr.length <= 105
  • -104 <= arr[i], difference <= 104

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i] 表示以第 i 个位置的元素为结尾的所有子序列中,最长的等差子序列的长度。
  2. 状态转移方程: 对于 dp[i],上一个定差子序列的取值定为 arr[i] - difference。只要找到以上一个数为结尾的定差子序列长度的 dp[arr[i] - difference],然后加上 1,就是以 i 为结尾的定差子序列的长度。这里可以使用哈希表进行优化,将元素和 dp[j] 绑定,放入哈希表中。
  3. 初始化: 刚开始的时候,需要把第一个元素放进哈希表中,即 hash[arr[0]] = 1
  4. 填表顺序: 根据状态转移方程,填表顺序是从左往右。
  5. 返回值: 根据状态表达,返回整个 dp 数组中的最大值。

代码

class Solution {
public:int longestSubsequence(vector<int>& arr, int difference) {unordered_map<int,int> hash;hash[arr[0]]=1;int ret=1;for(int i=1;i<arr.size();i++){hash[arr[i]]=hash[arr[i]-difference]+1;ret=max(ret,hash[arr[i]]);}return ret;}
};

02.最长的斐波那契子序列的长度

题目链接:https://leetcode.cn/problems/length-of-longest-fibonacci-subsequence/

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8][3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。

示例 2:

输入: arr = [1,3,7,11,12,14,18]
输出: 3
解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。

提示:

  • 3 <= arr.length <= 1000
  • 1 <= arr[i] < arr[i + 1] <= 10^9

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[j][i] 表示以第 j 位置以及第 i 位置的元素为结尾的所有的子序列中,最长的斐波那契子序列的长度。
  2. 状态转移方程:nums[j] = bnums[i] = c,那么这个序列的前一个元素就是 a = c - b。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么 dp[j][i] = dp[k][j] + 1
    • 如果 a 存在,但是 b < a < c,那么 dp[j][i] = 2
    • 如果 a 不存在,那么 dp[j][i] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标,可以在填表之前,将所有的「元素 + 下标」绑定在一起,放到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定最后一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 返回 dp 表中的最大值 ret。但是 ret 可能小于 3,小于 3 说明不存在,需要判断一下。

代码

class Solution {
public:int lenLongestFibSubseq(vector<int>& arr) {int n=arr.size();unordered_map<int,int> hash;for(int i=0;i<n;i++) hash[arr[i]]=i;vector<vector<int>> dp(n,vector<int>(n,2));int ret=2;for(int i=2;i<n;++i){for(int j=1;j<i;j++){int x=arr[i]-arr[j];if(x<arr[j]&&hash.count(x))dp[j][i] = dp[hash[x]][j]+1;ret = max(ret,dp[j][i]);}}return ret<3?0:ret;}
};

03.最长等差数列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence/

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]( 0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。 

提示:

  • 2 <= nums.length <= 1000
  • 0 <= nums[i] <= 500

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,最长的等差序列的长度。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么我们需要以 k 位置以及 i 位置元素为结尾的最长等差序列的长度,然后再加上 j 位置的元素即可。于是 dp[i][j] = dp[k][i] + 1。这里因为会有许多个 k,我们仅需离 i 最近的 k 即可。因此任何最长的都可以以 k 为结尾;
    • 如果 a 存在,但是 b < a < c,那么 dp[i][j] = 2
    • 如果 a 不存在,那么 dp[i][j] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。可以一边动态规划,一边保存最近的元素的下标,不用保存下标数组。遍历的时候,先固定倒数第二个数,再遍历倒数第一个数。这样可以在 i 使用完时候,将 nums[i] 扔到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定倒数第二个数;
    • 然后枚举倒数第一个数。
  6. 返回值: 返回 dp 表中的最大值。

代码

class Solution {
public:int longestArithSeqLength(vector<int>& nums) {unordered_map<int,int> hash;hash[nums[0]]=0;int n=nums.size();vector<vector<int>> dp(n,vector<int>(n,2));int ret=2;for(int i=1;i<n;i++){for(int j=i+1;j<n;j++){int x=2*nums[i]-nums[j];if(hash.count(x)) dp[i][j] = dp[hash[x]][i] + 1;ret=max(ret,dp[i][j]);}hash[nums[i]]=i;}return ret;}
};

04.等差数列划分 II - 子序列

题目链接:https://leetcode.cn/problems/arithmetic-slices-ii-subsequence/

给你一个整数数组 nums ,返回 nums 中所有 等差子序列 的数目。

如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。

  • 例如,[1, 3, 5, 7, 9][7, 7, 7, 7][3, -1, -5, -9] 都是等差序列。
  • 再例如,[1, 1, 2, 5, 7] 不是等差序列。

数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。

  • 例如,[2,5,10][1,2,1,***2***,4,1,***5\***,***10***] 的一个子序列。

题目数据保证答案是一个 32-bit 整数

示例 1:

输入:nums = [2,4,6,8,10]
输出:7
解释:所有的等差子序列为:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]

示例 2:

输入:nums = [7,7,7,7,7]
输出:16
解释:数组中的任意子序列都是等差子序列。

提示:

  • 1 <= nums.length <= 1000
  • -231 <= nums[i] <= 231 - 1

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,等差子序列的个数。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么以 k 元素以及 i 元素结尾的等差序列的个数为 dp[k][i],在这些子序列的后面加上 j 位置的元素依旧是等差序列。但是这里会多出来一个以 k, i, j 位置的元素组成的新的等差序列,因此 dp[i][j] += dp[k][i] + 1
    • 因为 a 可能有很多个,需要全部累加起来。
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。因此在 dp 之前,将所有元素和下标数组绑定在一起,放到哈希表中。这里保存下标数组是因为需要统计个数。
  4. 初始化: 刚开始是没有等差数列的,因此初始化 dp 表为 0
  5. 填表顺序:
    • 先固定倒数第一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 统计所有的等差子序列,返回 dp 表中所有元素的和。

代码

class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n=nums.size();unordered_map<long long,vector<int>> hash;for(int i=0;i<n;i++) hash[nums[i]].push_back(i);vector<vector<int>> dp(n,vector<int>(n));int sum=0;for(int j=2;j<n;j++){for(int i=1;i<j;i++){long long x=(long long)nums[i]*2-nums[j];if(hash.count(x)) for(int& k:hash[x])if(k<i) dp[i][j]+=dp[k][i]+1;sum+=dp[i][j];}}return sum;}
};

这篇关于算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757524

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图