onnx模型转trt模型报错TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1

2024-02-29 03:20

本文主要是介绍onnx模型转trt模型报错TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

具体报错:Results saved to D:\todesk\yolov8model
Predict:         yolo predict task=detect model=yolov8s.onnx imgsz=640
Validate:        yolo val task=detect model=yolov8s.onnx imgsz=640 data=coco.yaml
Visualize:       https://netron.app
(yolov8) PS D:\todesk\yolov8model> D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe   --onnx=yolov8s.onnx  --saveEngine=yolov8s.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
&&&& RUNNING TensorRT.trtexec [TensorRT v8402] # D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
[05/24/2023-16:33:33] [I] === Model Options ===
[05/24/2023-16:33:33] [I] Format: ONNX
[05/24/2023-16:33:33] [I] Model: yolov8s.onnx
[05/24/2023-16:33:33] [I] Output:
[05/24/2023-16:33:33] [I] === Build Options ===
[05/24/2023-16:33:33] [I] Max batch: explicit batch
[05/24/2023-16:33:33] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[05/24/2023-16:33:33] [I] minTiming: 1
[05/24/2023-16:33:33] [I] avgTiming: 8
[05/24/2023-16:33:33] [I] Precision: FP32
[05/24/2023-16:33:33] [I] LayerPrecisions:
[05/24/2023-16:33:33] [I] Calibration:
[05/24/2023-16:33:33] [I] Refit: Disabled
[05/24/2023-16:33:33] [I] Sparsity: Disabled
[05/24/2023-16:33:33] [I] Safe mode: Disabled
[05/24/2023-16:33:33] [I] DirectIO mode: Disabled
[05/24/2023-16:33:33] [I] Restricted mode: Disabled
[05/24/2023-16:33:33] [I] Build only: Enabled
[05/24/2023-16:33:33] [I] Save engine: yolov8s.trt
[05/24/2023-16:33:33] [I] Load engine:
[05/24/2023-16:33:33] [I] Profiling verbosity: 0
[05/24/2023-16:33:33] [I] Tactic sources: Using default tactic sources
[05/24/2023-16:33:33] [I] timingCacheMode: local
[05/24/2023-16:33:33] [I] timingCacheFile:
[05/24/2023-16:33:33] [I] Input(s)s format: fp32:CHW
[05/24/2023-16:33:33] [I] Output(s)s format: fp32:CHW
[05/24/2023-16:33:33] [I] Input build shape: images=1x3x640x640+4x3x640x640+8x3x640x640
[05/24/2023-16:33:33] [I] Input calibration shapes: model
[05/24/2023-16:33:33] [I] === System Options ===
[05/24/2023-16:33:33] [I] Device: 0
[05/24/2023-16:33:33] [I] DLACore:
[05/24/2023-16:33:33] [I] Plugins:
[05/24/2023-16:33:33] [I] === Inference Options ===
[05/24/2023-16:33:33] [I] Batch: Explicit
[05/24/2023-16:33:33] [I] Input inference shape: images=4x3x640x640
[05/24/2023-16:33:33] [I] Iterations: 10
[05/24/2023-16:33:33] [I] Duration: 3s (+ 200ms warm up)
[05/24/2023-16:33:33] [I] Sleep time: 0ms
[05/24/2023-16:33:33] [I] Idle time: 0ms
[05/24/2023-16:33:33] [I] Streams: 1
[05/24/2023-16:33:33] [I] ExposeDMA: Disabled
[05/24/2023-16:33:33] [I] Data transfers: Enabled
[05/24/2023-16:33:33] [I] Spin-wait: Disabled
[05/24/2023-16:33:33] [I] Multithreading: Disabled
[05/24/2023-16:33:33] [I] CUDA Graph: Disabled
[05/24/2023-16:33:33] [I] Separate profiling: Disabled
[05/24/2023-16:33:33] [I] Time Deserialize: Disabled
[05/24/2023-16:33:33] [I] Time Refit: Disabled
[05/24/2023-16:33:33] [I] Inputs:
[05/24/2023-16:33:33] [I] === Reporting Options ===
[05/24/2023-16:33:33] [I] Verbose: Disabled
[05/24/2023-16:33:33] [I] Averages: 10 inferences
[05/24/2023-16:33:33] [I] Percentile: 99
[05/24/2023-16:33:33] [I] Dump refittable layers:Disabled
[05/24/2023-16:33:33] [I] Dump output: Disabled
[05/24/2023-16:33:33] [I] Profile: Disabled
[05/24/2023-16:33:33] [I] Export timing to JSON file:
[05/24/2023-16:33:33] [I] Export output to JSON file:
[05/24/2023-16:33:33] [I] Export profile to JSON file:
[05/24/2023-16:33:33] [I]
[05/24/2023-16:33:33] [I] === Device Information ===
[05/24/2023-16:33:33] [I] Selected Device: NVIDIA GeForce RTX 4080
[05/24/2023-16:33:33] [I] Compute Capability: 8.9
[05/24/2023-16:33:33] [I] SMs: 76
[05/24/2023-16:33:33] [I] Compute Clock Rate: 2.535 GHz
[05/24/2023-16:33:33] [I] Device Global Memory: 16375 MiB
[05/24/2023-16:33:33] [I] Shared Memory per SM: 100 KiB
[05/24/2023-16:33:33] [I] Memory Bus Width: 256 bits (ECC disabled)
[05/24/2023-16:33:33] [I] Memory Clock Rate: 11.201 GHz
[05/24/2023-16:33:33] [I]
[05/24/2023-16:33:33] [I] TensorRT version: 8.4.2
[05/24/2023-16:33:34] [I] [TRT] [MemUsageChange] Init CUDA: CPU +489, GPU +0, now: CPU 13900, GPU 1491 (MiB)
[05/24/2023-16:33:34] [I] [TRT] [MemUsageChange] Init builder kernel library: CPU +378, GPU +104, now: CPU 14465, GPU 1595 (MiB)
[05/24/2023-16:33:34] [I] Start parsing network model
[05/24/2023-16:33:35] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:33:35] [I] [TRT] Input filename:   yolov8s.onnx
[05/24/2023-16:33:35] [I] [TRT] ONNX IR version:  0.0.8
[05/24/2023-16:33:35] [I] [TRT] Opset version:    17
[05/24/2023-16:33:35] [I] [TRT] Producer name:    pytorch
[05/24/2023-16:33:35] [I] [TRT] Producer version: 2.0.1
[05/24/2023-16:33:35] [I] [TRT] Domain:
[05/24/2023-16:33:35] [I] [TRT] Model version:    0
[05/24/2023-16:33:35] [I] [TRT] Doc string:
[05/24/2023-16:33:35] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:33:35] [W] [TRT] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[05/24/2023-16:33:35] [I] Finish parsing network model
[05/24/2023-16:33:35] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +759, GPU +272, now: CPU 15167, GPU 1867 (MiB)
[05/24/2023-16:33:36] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +387, GPU +264, now: CPU 15554, GPU 2131 (MiB)
[05/24/2023-16:33:36] [W] [TRT] TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1
[05/24/2023-16:33:36] [I] [TRT] Local timing cache in use. Profiling results in this builder pass will not be stored.
Unexpected Internal Error: [virtualMemoryBuffer.cpp::nvinfer1::StdVirtualMemoryBufferImpl::~StdVirtualMemoryBufferImpl::104] Error Code 1: Cuda Runtime (driver shutting down)
参考这篇博客

(16条消息) 【TensorRT】TensorRT was linked against cudnn 8.6.0 but loaded cudnn 8.3.2_半路转行的水博的博客-CSDN博客https://blog.csdn.net/sanxiaw/article/details/128017373

于是去cuDNN Archive | NVIDIA 开发者icon-default.png?t=N4N7https://developer.nvidia.cn/rdp/cudnn-archive

下载cudnn8.4.1版本的cudnn(具体名称为cudnn-windows-x86_64-8.4.1.50_cuda11.6-archive.zip)

中间还报错抛出异常——Could not locate zlibwapi.dll. Please make sure it is in your library p

参考如下这两篇解决这个zlibwapi.dll的报错。(16条消息) Could not locate zlibwapi.dll. Please make sure it is in your library path_zlibwapi.dll无法注册_Chaos_Happy的博客-CSDN博客icon-default.png?t=N4N7https://blog.csdn.net/Chaos_Happy/article/details/124064428Installation Guide - NVIDIA Docsicon-default.png?t=N4N7https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-zlib-windows

最后成功输出了:

(yolov8) PS D:\todesk\yolov8model> D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe   --onnx=yolov8s.onnx  --saveEngine=yolov8s.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
&&&& RUNNING TensorRT.trtexec [TensorRT v8402] # D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
[05/24/2023-16:56:08] [I] === Model Options ===
[05/24/2023-16:56:08] [I] Format: ONNX
[05/24/2023-16:56:08] [I] Model: yolov8s.onnx
[05/24/2023-16:56:08] [I] Output:
[05/24/2023-16:56:08] [I] === Build Options ===
[05/24/2023-16:56:08] [I] Max batch: explicit batch
[05/24/2023-16:56:08] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[05/24/2023-16:56:08] [I] minTiming: 1
[05/24/2023-16:56:08] [I] avgTiming: 8
[05/24/2023-16:56:08] [I] Precision: FP32
[05/24/2023-16:56:08] [I] LayerPrecisions:
[05/24/2023-16:56:08] [I] Calibration:
[05/24/2023-16:56:08] [I] Refit: Disabled
[05/24/2023-16:56:08] [I] Sparsity: Disabled
[05/24/2023-16:56:08] [I] Safe mode: Disabled
[05/24/2023-16:56:08] [I] DirectIO mode: Disabled
[05/24/2023-16:56:08] [I] Restricted mode: Disabled
[05/24/2023-16:56:08] [I] Build only: Enabled
[05/24/2023-16:56:08] [I] Save engine: yolov8s.trt
[05/24/2023-16:56:08] [I] Load engine:
[05/24/2023-16:56:08] [I] Profiling verbosity: 0
[05/24/2023-16:56:08] [I] Tactic sources: Using default tactic sources
[05/24/2023-16:56:08] [I] timingCacheMode: local
[05/24/2023-16:56:08] [I] timingCacheFile:
[05/24/2023-16:56:08] [I] Input(s)s format: fp32:CHW
[05/24/2023-16:56:08] [I] Output(s)s format: fp32:CHW
[05/24/2023-16:56:08] [I] Input build shape: images=1x3x640x640+4x3x640x640+8x3x640x640
[05/24/2023-16:56:08] [I] Input calibration shapes: model
[05/24/2023-16:56:08] [I] === System Options ===
[05/24/2023-16:56:08] [I] Device: 0
[05/24/2023-16:56:08] [I] DLACore:
[05/24/2023-16:56:08] [I] Plugins:
[05/24/2023-16:56:08] [I] === Inference Options ===
[05/24/2023-16:56:08] [I] Batch: Explicit
[05/24/2023-16:56:08] [I] Input inference shape: images=4x3x640x640
[05/24/2023-16:56:08] [I] Iterations: 10
[05/24/2023-16:56:08] [I] Duration: 3s (+ 200ms warm up)
[05/24/2023-16:56:08] [I] Sleep time: 0ms
[05/24/2023-16:56:08] [I] Idle time: 0ms
[05/24/2023-16:56:08] [I] Streams: 1
[05/24/2023-16:56:08] [I] ExposeDMA: Disabled
[05/24/2023-16:56:08] [I] Data transfers: Enabled
[05/24/2023-16:56:08] [I] Spin-wait: Disabled
[05/24/2023-16:56:08] [I] Multithreading: Disabled
[05/24/2023-16:56:08] [I] CUDA Graph: Disabled
[05/24/2023-16:56:08] [I] Separate profiling: Disabled
[05/24/2023-16:56:08] [I] Time Deserialize: Disabled
[05/24/2023-16:56:08] [I] Time Refit: Disabled
[05/24/2023-16:56:08] [I] Inputs:
[05/24/2023-16:56:08] [I] === Reporting Options ===
[05/24/2023-16:56:08] [I] Verbose: Disabled
[05/24/2023-16:56:08] [I] Averages: 10 inferences
[05/24/2023-16:56:08] [I] Percentile: 99
[05/24/2023-16:56:08] [I] Dump refittable layers:Disabled
[05/24/2023-16:56:08] [I] Dump output: Disabled
[05/24/2023-16:56:08] [I] Profile: Disabled
[05/24/2023-16:56:08] [I] Export timing to JSON file:
[05/24/2023-16:56:08] [I] Export output to JSON file:
[05/24/2023-16:56:08] [I] Export profile to JSON file:
[05/24/2023-16:56:08] [I]
[05/24/2023-16:56:08] [I] === Device Information ===
[05/24/2023-16:56:08] [I] Selected Device: NVIDIA GeForce RTX 4080
[05/24/2023-16:56:08] [I] Compute Capability: 8.9
[05/24/2023-16:56:08] [I] SMs: 76
[05/24/2023-16:56:08] [I] Compute Clock Rate: 2.535 GHz
[05/24/2023-16:56:08] [I] Device Global Memory: 16375 MiB
[05/24/2023-16:56:08] [I] Shared Memory per SM: 100 KiB
[05/24/2023-16:56:08] [I] Memory Bus Width: 256 bits (ECC disabled)
[05/24/2023-16:56:08] [I] Memory Clock Rate: 11.201 GHz
[05/24/2023-16:56:08] [I]
[05/24/2023-16:56:08] [I] TensorRT version: 8.4.2
[05/24/2023-16:56:08] [I] [TRT] [MemUsageChange] Init CUDA: CPU +483, GPU +0, now: CPU 12059, GPU 1491 (MiB)
[05/24/2023-16:56:09] [I] [TRT] [MemUsageChange] Init builder kernel library: CPU +377, GPU +104, now: CPU 12626, GPU 1595 (MiB)
[05/24/2023-16:56:09] [I] Start parsing network model
[05/24/2023-16:56:09] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:56:09] [I] [TRT] Input filename:   yolov8s.onnx
[05/24/2023-16:56:09] [I] [TRT] ONNX IR version:  0.0.8
[05/24/2023-16:56:09] [I] [TRT] Opset version:    17
[05/24/2023-16:56:09] [I] [TRT] Producer name:    pytorch
[05/24/2023-16:56:09] [I] [TRT] Producer version: 2.0.1
[05/24/2023-16:56:09] [I] [TRT] Domain:
[05/24/2023-16:56:09] [I] [TRT] Model version:    0
[05/24/2023-16:56:09] [I] [TRT] Doc string:
[05/24/2023-16:56:09] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:56:09] [W] [TRT] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[05/24/2023-16:56:09] [I] Finish parsing network model
[05/24/2023-16:56:09] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +759, GPU +272, now: CPU 13318, GPU 1867 (MiB)
[05/24/2023-16:56:10] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +164, GPU +56, now: CPU 13482, GPU 1923 (MiB)
[05/24/2023-16:56:10] [I] [TRT] Local timing cache in use. Profiling results in this builder pass will not be stored.
[05/24/2023-16:57:28] [I] [TRT] Detected 1 inputs and 3 output network tensors.
[05/24/2023-16:57:28] [I] [TRT] Total Host Persistent Memory: 154464
[05/24/2023-16:57:28] [I] [TRT] Total Device Persistent Memory: 1202688
[05/24/2023-16:57:28] [I] [TRT] Total Scratch Memory: 0
[05/24/2023-16:57:28] [I] [TRT] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 15 MiB, GPU 6734 MiB
[05/24/2023-16:57:28] [I] [TRT] [BlockAssignment] Algorithm ShiftNTopDown took 114.958ms to assign 16 blocks to 223 nodes requiring 272035344 bytes.
[05/24/2023-16:57:28] [I] [TRT] Total Activation Memory: 272035344
[05/24/2023-16:57:28] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +6, GPU +51, now: CPU 6, GPU 51 (MiB)
[05/24/2023-16:57:28] [W] [TRT] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
[05/24/2023-16:57:28] [W] [TRT] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
[05/24/2023-16:57:29] [I] Engine built in 81.0279 sec.
[05/24/2023-16:57:29] [I] [TRT] [MemUsageChange] Init CUDA: CPU +0, GPU +0, now: CPU 14781, GPU 2339 (MiB)
[05/24/2023-16:57:29] [I] [TRT] Loaded engine size: 51 MiB
[05/24/2023-16:57:29] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +50, now: CPU 0, GPU 50 (MiB)
[05/24/2023-16:57:29] [I] Engine deserialized in 0.0364477 sec.
[05/24/2023-16:57:29] [I] Skipped inference phase since --buildOnly is added.
&&&& PASSED TensorRT.trtexec [TensorRT v8402] # D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
 

安装环境依赖于python3.9

(yolov8) PS D:\todesk\yolov8model> conda list
# packages in environment at D:\soft\conda\envs\yolov8:
#
# Name                    Version                   Build  Channel
ca-certificates           2023.01.10           haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
certifi                   2023.5.7                 pypi_0    pypi
charset-normalizer        3.1.0                    pypi_0    pypi
colorama                  0.4.6                    pypi_0    pypi
contourpy                 1.0.7                    pypi_0    pypi
cycler                    0.11.0                   pypi_0    pypi
filelock                  3.12.0                   pypi_0    pypi
fonttools                 4.39.4                   pypi_0    pypi
idna                      3.4                      pypi_0    pypi
importlib-resources       5.12.0                   pypi_0    pypi
jinja2                    3.1.2                    pypi_0    pypi
kiwisolver                1.4.4                    pypi_0    pypi
markupsafe                2.1.2                    pypi_0    pypi
matplotlib                3.7.1                    pypi_0    pypi
mpmath                    1.3.0                    pypi_0    pypi
networkx                  3.1                      pypi_0    pypi
numpy                     1.24.3                   pypi_0    pypi
onnx                      1.14.0                   pypi_0    pypi
opencv-python             4.7.0.72                 pypi_0    pypi
openssl                   1.1.1t               h2bbff1b_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
packaging                 23.1                     pypi_0    pypi
pandas                    2.0.1                    pypi_0    pypi
pillow                    9.5.0                    pypi_0    pypi
pip                       23.0.1           py39haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
protobuf                  4.23.1                   pypi_0    pypi
psutil                    5.9.5                    pypi_0    pypi
pyparsing                 3.0.9                    pypi_0    pypi
python                    3.9.16               h6244533_2    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
python-dateutil           2.8.2                    pypi_0    pypi
pytz                      2023.3                   pypi_0    pypi
pyyaml                    6.0                      pypi_0    pypi
requests                  2.31.0                   pypi_0    pypi
scipy                     1.10.1                   pypi_0    pypi
seaborn                   0.12.2                   pypi_0    pypi
sentry-sdk                1.24.0                   pypi_0    pypi
setuptools                66.0.0           py39haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
six                       1.16.0                   pypi_0    pypi
sqlite                    3.41.2               h2bbff1b_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
sympy                     1.12                     pypi_0    pypi
torch                     2.0.1                    pypi_0    pypi
torchvision               0.15.2                   pypi_0    pypi
tqdm                      4.65.0                   pypi_0    pypi
typing-extensions         4.6.1                    pypi_0    pypi
tzdata                    2023.3                   pypi_0    pypi
ultralytics               8.0.107                  pypi_0    pypi
urllib3                   1.26.16                  pypi_0    pypi
vc                        14.2                 h21ff451_1    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
vs2015_runtime            14.27.29016          h5e58377_2    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
wheel                     0.38.4           py39haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
zipp                      3.15.0                   pypi_0    pypi

参考(16条消息) Win10环境下yolov8快速配置与测试_FeiYull_的博客-CSDN博客https://blog.csdn.net/m0_72734364/article/details/128815530

和这篇 

(16条消息) win10下 yolov8 tensorrt模型加速部署【实战】_FeiYull_的博客-CSDN博客https://blog.csdn.net/m0_72734364/article/details/128865904?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-1-128865904-blog-129989402.235%5Ev36%5Epc_relevant_anti_vip&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-1-128865904-blog-129989402.235%5Ev36%5Epc_relevant_anti_vip&utm_relevant_index=2清华镜像源+英伟达pypi库


conda create -n yolov8 python=3.9 -y
conda activate yolov8
pip install ultralytics

这篇关于onnx模型转trt模型报错TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757422

相关文章

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

MySQL报错sql_mode=only_full_group_by的问题解决

《MySQL报错sql_mode=only_full_group_by的问题解决》本文主要介绍了MySQL报错sql_mode=only_full_group_by的问题解决,文中通过示例代码介绍的非... 目录报错信息DataGrip 报错还原Navicat 报错还原报错原因解决方案查看当前 sql mo

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时