onnx模型转trt模型报错TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1

2024-02-29 03:20

本文主要是介绍onnx模型转trt模型报错TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

具体报错:Results saved to D:\todesk\yolov8model
Predict:         yolo predict task=detect model=yolov8s.onnx imgsz=640
Validate:        yolo val task=detect model=yolov8s.onnx imgsz=640 data=coco.yaml
Visualize:       https://netron.app
(yolov8) PS D:\todesk\yolov8model> D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe   --onnx=yolov8s.onnx  --saveEngine=yolov8s.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
&&&& RUNNING TensorRT.trtexec [TensorRT v8402] # D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
[05/24/2023-16:33:33] [I] === Model Options ===
[05/24/2023-16:33:33] [I] Format: ONNX
[05/24/2023-16:33:33] [I] Model: yolov8s.onnx
[05/24/2023-16:33:33] [I] Output:
[05/24/2023-16:33:33] [I] === Build Options ===
[05/24/2023-16:33:33] [I] Max batch: explicit batch
[05/24/2023-16:33:33] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[05/24/2023-16:33:33] [I] minTiming: 1
[05/24/2023-16:33:33] [I] avgTiming: 8
[05/24/2023-16:33:33] [I] Precision: FP32
[05/24/2023-16:33:33] [I] LayerPrecisions:
[05/24/2023-16:33:33] [I] Calibration:
[05/24/2023-16:33:33] [I] Refit: Disabled
[05/24/2023-16:33:33] [I] Sparsity: Disabled
[05/24/2023-16:33:33] [I] Safe mode: Disabled
[05/24/2023-16:33:33] [I] DirectIO mode: Disabled
[05/24/2023-16:33:33] [I] Restricted mode: Disabled
[05/24/2023-16:33:33] [I] Build only: Enabled
[05/24/2023-16:33:33] [I] Save engine: yolov8s.trt
[05/24/2023-16:33:33] [I] Load engine:
[05/24/2023-16:33:33] [I] Profiling verbosity: 0
[05/24/2023-16:33:33] [I] Tactic sources: Using default tactic sources
[05/24/2023-16:33:33] [I] timingCacheMode: local
[05/24/2023-16:33:33] [I] timingCacheFile:
[05/24/2023-16:33:33] [I] Input(s)s format: fp32:CHW
[05/24/2023-16:33:33] [I] Output(s)s format: fp32:CHW
[05/24/2023-16:33:33] [I] Input build shape: images=1x3x640x640+4x3x640x640+8x3x640x640
[05/24/2023-16:33:33] [I] Input calibration shapes: model
[05/24/2023-16:33:33] [I] === System Options ===
[05/24/2023-16:33:33] [I] Device: 0
[05/24/2023-16:33:33] [I] DLACore:
[05/24/2023-16:33:33] [I] Plugins:
[05/24/2023-16:33:33] [I] === Inference Options ===
[05/24/2023-16:33:33] [I] Batch: Explicit
[05/24/2023-16:33:33] [I] Input inference shape: images=4x3x640x640
[05/24/2023-16:33:33] [I] Iterations: 10
[05/24/2023-16:33:33] [I] Duration: 3s (+ 200ms warm up)
[05/24/2023-16:33:33] [I] Sleep time: 0ms
[05/24/2023-16:33:33] [I] Idle time: 0ms
[05/24/2023-16:33:33] [I] Streams: 1
[05/24/2023-16:33:33] [I] ExposeDMA: Disabled
[05/24/2023-16:33:33] [I] Data transfers: Enabled
[05/24/2023-16:33:33] [I] Spin-wait: Disabled
[05/24/2023-16:33:33] [I] Multithreading: Disabled
[05/24/2023-16:33:33] [I] CUDA Graph: Disabled
[05/24/2023-16:33:33] [I] Separate profiling: Disabled
[05/24/2023-16:33:33] [I] Time Deserialize: Disabled
[05/24/2023-16:33:33] [I] Time Refit: Disabled
[05/24/2023-16:33:33] [I] Inputs:
[05/24/2023-16:33:33] [I] === Reporting Options ===
[05/24/2023-16:33:33] [I] Verbose: Disabled
[05/24/2023-16:33:33] [I] Averages: 10 inferences
[05/24/2023-16:33:33] [I] Percentile: 99
[05/24/2023-16:33:33] [I] Dump refittable layers:Disabled
[05/24/2023-16:33:33] [I] Dump output: Disabled
[05/24/2023-16:33:33] [I] Profile: Disabled
[05/24/2023-16:33:33] [I] Export timing to JSON file:
[05/24/2023-16:33:33] [I] Export output to JSON file:
[05/24/2023-16:33:33] [I] Export profile to JSON file:
[05/24/2023-16:33:33] [I]
[05/24/2023-16:33:33] [I] === Device Information ===
[05/24/2023-16:33:33] [I] Selected Device: NVIDIA GeForce RTX 4080
[05/24/2023-16:33:33] [I] Compute Capability: 8.9
[05/24/2023-16:33:33] [I] SMs: 76
[05/24/2023-16:33:33] [I] Compute Clock Rate: 2.535 GHz
[05/24/2023-16:33:33] [I] Device Global Memory: 16375 MiB
[05/24/2023-16:33:33] [I] Shared Memory per SM: 100 KiB
[05/24/2023-16:33:33] [I] Memory Bus Width: 256 bits (ECC disabled)
[05/24/2023-16:33:33] [I] Memory Clock Rate: 11.201 GHz
[05/24/2023-16:33:33] [I]
[05/24/2023-16:33:33] [I] TensorRT version: 8.4.2
[05/24/2023-16:33:34] [I] [TRT] [MemUsageChange] Init CUDA: CPU +489, GPU +0, now: CPU 13900, GPU 1491 (MiB)
[05/24/2023-16:33:34] [I] [TRT] [MemUsageChange] Init builder kernel library: CPU +378, GPU +104, now: CPU 14465, GPU 1595 (MiB)
[05/24/2023-16:33:34] [I] Start parsing network model
[05/24/2023-16:33:35] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:33:35] [I] [TRT] Input filename:   yolov8s.onnx
[05/24/2023-16:33:35] [I] [TRT] ONNX IR version:  0.0.8
[05/24/2023-16:33:35] [I] [TRT] Opset version:    17
[05/24/2023-16:33:35] [I] [TRT] Producer name:    pytorch
[05/24/2023-16:33:35] [I] [TRT] Producer version: 2.0.1
[05/24/2023-16:33:35] [I] [TRT] Domain:
[05/24/2023-16:33:35] [I] [TRT] Model version:    0
[05/24/2023-16:33:35] [I] [TRT] Doc string:
[05/24/2023-16:33:35] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:33:35] [W] [TRT] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[05/24/2023-16:33:35] [I] Finish parsing network model
[05/24/2023-16:33:35] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +759, GPU +272, now: CPU 15167, GPU 1867 (MiB)
[05/24/2023-16:33:36] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +387, GPU +264, now: CPU 15554, GPU 2131 (MiB)
[05/24/2023-16:33:36] [W] [TRT] TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1
[05/24/2023-16:33:36] [I] [TRT] Local timing cache in use. Profiling results in this builder pass will not be stored.
Unexpected Internal Error: [virtualMemoryBuffer.cpp::nvinfer1::StdVirtualMemoryBufferImpl::~StdVirtualMemoryBufferImpl::104] Error Code 1: Cuda Runtime (driver shutting down)
参考这篇博客

(16条消息) 【TensorRT】TensorRT was linked against cudnn 8.6.0 but loaded cudnn 8.3.2_半路转行的水博的博客-CSDN博客https://blog.csdn.net/sanxiaw/article/details/128017373

于是去cuDNN Archive | NVIDIA 开发者icon-default.png?t=N4N7https://developer.nvidia.cn/rdp/cudnn-archive

下载cudnn8.4.1版本的cudnn(具体名称为cudnn-windows-x86_64-8.4.1.50_cuda11.6-archive.zip)

中间还报错抛出异常——Could not locate zlibwapi.dll. Please make sure it is in your library p

参考如下这两篇解决这个zlibwapi.dll的报错。(16条消息) Could not locate zlibwapi.dll. Please make sure it is in your library path_zlibwapi.dll无法注册_Chaos_Happy的博客-CSDN博客icon-default.png?t=N4N7https://blog.csdn.net/Chaos_Happy/article/details/124064428Installation Guide - NVIDIA Docsicon-default.png?t=N4N7https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-zlib-windows

最后成功输出了:

(yolov8) PS D:\todesk\yolov8model> D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe   --onnx=yolov8s.onnx  --saveEngine=yolov8s.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
&&&& RUNNING TensorRT.trtexec [TensorRT v8402] # D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
[05/24/2023-16:56:08] [I] === Model Options ===
[05/24/2023-16:56:08] [I] Format: ONNX
[05/24/2023-16:56:08] [I] Model: yolov8s.onnx
[05/24/2023-16:56:08] [I] Output:
[05/24/2023-16:56:08] [I] === Build Options ===
[05/24/2023-16:56:08] [I] Max batch: explicit batch
[05/24/2023-16:56:08] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[05/24/2023-16:56:08] [I] minTiming: 1
[05/24/2023-16:56:08] [I] avgTiming: 8
[05/24/2023-16:56:08] [I] Precision: FP32
[05/24/2023-16:56:08] [I] LayerPrecisions:
[05/24/2023-16:56:08] [I] Calibration:
[05/24/2023-16:56:08] [I] Refit: Disabled
[05/24/2023-16:56:08] [I] Sparsity: Disabled
[05/24/2023-16:56:08] [I] Safe mode: Disabled
[05/24/2023-16:56:08] [I] DirectIO mode: Disabled
[05/24/2023-16:56:08] [I] Restricted mode: Disabled
[05/24/2023-16:56:08] [I] Build only: Enabled
[05/24/2023-16:56:08] [I] Save engine: yolov8s.trt
[05/24/2023-16:56:08] [I] Load engine:
[05/24/2023-16:56:08] [I] Profiling verbosity: 0
[05/24/2023-16:56:08] [I] Tactic sources: Using default tactic sources
[05/24/2023-16:56:08] [I] timingCacheMode: local
[05/24/2023-16:56:08] [I] timingCacheFile:
[05/24/2023-16:56:08] [I] Input(s)s format: fp32:CHW
[05/24/2023-16:56:08] [I] Output(s)s format: fp32:CHW
[05/24/2023-16:56:08] [I] Input build shape: images=1x3x640x640+4x3x640x640+8x3x640x640
[05/24/2023-16:56:08] [I] Input calibration shapes: model
[05/24/2023-16:56:08] [I] === System Options ===
[05/24/2023-16:56:08] [I] Device: 0
[05/24/2023-16:56:08] [I] DLACore:
[05/24/2023-16:56:08] [I] Plugins:
[05/24/2023-16:56:08] [I] === Inference Options ===
[05/24/2023-16:56:08] [I] Batch: Explicit
[05/24/2023-16:56:08] [I] Input inference shape: images=4x3x640x640
[05/24/2023-16:56:08] [I] Iterations: 10
[05/24/2023-16:56:08] [I] Duration: 3s (+ 200ms warm up)
[05/24/2023-16:56:08] [I] Sleep time: 0ms
[05/24/2023-16:56:08] [I] Idle time: 0ms
[05/24/2023-16:56:08] [I] Streams: 1
[05/24/2023-16:56:08] [I] ExposeDMA: Disabled
[05/24/2023-16:56:08] [I] Data transfers: Enabled
[05/24/2023-16:56:08] [I] Spin-wait: Disabled
[05/24/2023-16:56:08] [I] Multithreading: Disabled
[05/24/2023-16:56:08] [I] CUDA Graph: Disabled
[05/24/2023-16:56:08] [I] Separate profiling: Disabled
[05/24/2023-16:56:08] [I] Time Deserialize: Disabled
[05/24/2023-16:56:08] [I] Time Refit: Disabled
[05/24/2023-16:56:08] [I] Inputs:
[05/24/2023-16:56:08] [I] === Reporting Options ===
[05/24/2023-16:56:08] [I] Verbose: Disabled
[05/24/2023-16:56:08] [I] Averages: 10 inferences
[05/24/2023-16:56:08] [I] Percentile: 99
[05/24/2023-16:56:08] [I] Dump refittable layers:Disabled
[05/24/2023-16:56:08] [I] Dump output: Disabled
[05/24/2023-16:56:08] [I] Profile: Disabled
[05/24/2023-16:56:08] [I] Export timing to JSON file:
[05/24/2023-16:56:08] [I] Export output to JSON file:
[05/24/2023-16:56:08] [I] Export profile to JSON file:
[05/24/2023-16:56:08] [I]
[05/24/2023-16:56:08] [I] === Device Information ===
[05/24/2023-16:56:08] [I] Selected Device: NVIDIA GeForce RTX 4080
[05/24/2023-16:56:08] [I] Compute Capability: 8.9
[05/24/2023-16:56:08] [I] SMs: 76
[05/24/2023-16:56:08] [I] Compute Clock Rate: 2.535 GHz
[05/24/2023-16:56:08] [I] Device Global Memory: 16375 MiB
[05/24/2023-16:56:08] [I] Shared Memory per SM: 100 KiB
[05/24/2023-16:56:08] [I] Memory Bus Width: 256 bits (ECC disabled)
[05/24/2023-16:56:08] [I] Memory Clock Rate: 11.201 GHz
[05/24/2023-16:56:08] [I]
[05/24/2023-16:56:08] [I] TensorRT version: 8.4.2
[05/24/2023-16:56:08] [I] [TRT] [MemUsageChange] Init CUDA: CPU +483, GPU +0, now: CPU 12059, GPU 1491 (MiB)
[05/24/2023-16:56:09] [I] [TRT] [MemUsageChange] Init builder kernel library: CPU +377, GPU +104, now: CPU 12626, GPU 1595 (MiB)
[05/24/2023-16:56:09] [I] Start parsing network model
[05/24/2023-16:56:09] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:56:09] [I] [TRT] Input filename:   yolov8s.onnx
[05/24/2023-16:56:09] [I] [TRT] ONNX IR version:  0.0.8
[05/24/2023-16:56:09] [I] [TRT] Opset version:    17
[05/24/2023-16:56:09] [I] [TRT] Producer name:    pytorch
[05/24/2023-16:56:09] [I] [TRT] Producer version: 2.0.1
[05/24/2023-16:56:09] [I] [TRT] Domain:
[05/24/2023-16:56:09] [I] [TRT] Model version:    0
[05/24/2023-16:56:09] [I] [TRT] Doc string:
[05/24/2023-16:56:09] [I] [TRT] ----------------------------------------------------------------
[05/24/2023-16:56:09] [W] [TRT] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[05/24/2023-16:56:09] [I] Finish parsing network model
[05/24/2023-16:56:09] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +759, GPU +272, now: CPU 13318, GPU 1867 (MiB)
[05/24/2023-16:56:10] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +164, GPU +56, now: CPU 13482, GPU 1923 (MiB)
[05/24/2023-16:56:10] [I] [TRT] Local timing cache in use. Profiling results in this builder pass will not be stored.
[05/24/2023-16:57:28] [I] [TRT] Detected 1 inputs and 3 output network tensors.
[05/24/2023-16:57:28] [I] [TRT] Total Host Persistent Memory: 154464
[05/24/2023-16:57:28] [I] [TRT] Total Device Persistent Memory: 1202688
[05/24/2023-16:57:28] [I] [TRT] Total Scratch Memory: 0
[05/24/2023-16:57:28] [I] [TRT] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 15 MiB, GPU 6734 MiB
[05/24/2023-16:57:28] [I] [TRT] [BlockAssignment] Algorithm ShiftNTopDown took 114.958ms to assign 16 blocks to 223 nodes requiring 272035344 bytes.
[05/24/2023-16:57:28] [I] [TRT] Total Activation Memory: 272035344
[05/24/2023-16:57:28] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +6, GPU +51, now: CPU 6, GPU 51 (MiB)
[05/24/2023-16:57:28] [W] [TRT] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
[05/24/2023-16:57:28] [W] [TRT] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
[05/24/2023-16:57:29] [I] Engine built in 81.0279 sec.
[05/24/2023-16:57:29] [I] [TRT] [MemUsageChange] Init CUDA: CPU +0, GPU +0, now: CPU 14781, GPU 2339 (MiB)
[05/24/2023-16:57:29] [I] [TRT] Loaded engine size: 51 MiB
[05/24/2023-16:57:29] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +50, now: CPU 0, GPU 50 (MiB)
[05/24/2023-16:57:29] [I] Engine deserialized in 0.0364477 sec.
[05/24/2023-16:57:29] [I] Skipped inference phase since --buildOnly is added.
&&&& PASSED TensorRT.trtexec [TensorRT v8402] # D:\1\TensorRT_YOLO\TensorRT-8.4.2.4\bin\trtexec.exe --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
 

安装环境依赖于python3.9

(yolov8) PS D:\todesk\yolov8model> conda list
# packages in environment at D:\soft\conda\envs\yolov8:
#
# Name                    Version                   Build  Channel
ca-certificates           2023.01.10           haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
certifi                   2023.5.7                 pypi_0    pypi
charset-normalizer        3.1.0                    pypi_0    pypi
colorama                  0.4.6                    pypi_0    pypi
contourpy                 1.0.7                    pypi_0    pypi
cycler                    0.11.0                   pypi_0    pypi
filelock                  3.12.0                   pypi_0    pypi
fonttools                 4.39.4                   pypi_0    pypi
idna                      3.4                      pypi_0    pypi
importlib-resources       5.12.0                   pypi_0    pypi
jinja2                    3.1.2                    pypi_0    pypi
kiwisolver                1.4.4                    pypi_0    pypi
markupsafe                2.1.2                    pypi_0    pypi
matplotlib                3.7.1                    pypi_0    pypi
mpmath                    1.3.0                    pypi_0    pypi
networkx                  3.1                      pypi_0    pypi
numpy                     1.24.3                   pypi_0    pypi
onnx                      1.14.0                   pypi_0    pypi
opencv-python             4.7.0.72                 pypi_0    pypi
openssl                   1.1.1t               h2bbff1b_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
packaging                 23.1                     pypi_0    pypi
pandas                    2.0.1                    pypi_0    pypi
pillow                    9.5.0                    pypi_0    pypi
pip                       23.0.1           py39haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
protobuf                  4.23.1                   pypi_0    pypi
psutil                    5.9.5                    pypi_0    pypi
pyparsing                 3.0.9                    pypi_0    pypi
python                    3.9.16               h6244533_2    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
python-dateutil           2.8.2                    pypi_0    pypi
pytz                      2023.3                   pypi_0    pypi
pyyaml                    6.0                      pypi_0    pypi
requests                  2.31.0                   pypi_0    pypi
scipy                     1.10.1                   pypi_0    pypi
seaborn                   0.12.2                   pypi_0    pypi
sentry-sdk                1.24.0                   pypi_0    pypi
setuptools                66.0.0           py39haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
six                       1.16.0                   pypi_0    pypi
sqlite                    3.41.2               h2bbff1b_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
sympy                     1.12                     pypi_0    pypi
torch                     2.0.1                    pypi_0    pypi
torchvision               0.15.2                   pypi_0    pypi
tqdm                      4.65.0                   pypi_0    pypi
typing-extensions         4.6.1                    pypi_0    pypi
tzdata                    2023.3                   pypi_0    pypi
ultralytics               8.0.107                  pypi_0    pypi
urllib3                   1.26.16                  pypi_0    pypi
vc                        14.2                 h21ff451_1    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
vs2015_runtime            14.27.29016          h5e58377_2    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
wheel                     0.38.4           py39haa95532_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
zipp                      3.15.0                   pypi_0    pypi

参考(16条消息) Win10环境下yolov8快速配置与测试_FeiYull_的博客-CSDN博客https://blog.csdn.net/m0_72734364/article/details/128815530

和这篇 

(16条消息) win10下 yolov8 tensorrt模型加速部署【实战】_FeiYull_的博客-CSDN博客https://blog.csdn.net/m0_72734364/article/details/128865904?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-1-128865904-blog-129989402.235%5Ev36%5Epc_relevant_anti_vip&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-1-128865904-blog-129989402.235%5Ev36%5Epc_relevant_anti_vip&utm_relevant_index=2清华镜像源+英伟达pypi库


conda create -n yolov8 python=3.9 -y
conda activate yolov8
pip install ultralytics

这篇关于onnx模型转trt模型报错TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757422

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号