本文主要是介绍RTS游戏开发:基于四叉树的平面管理系统【加源码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
为什么要有四叉树?
四叉树的思路。
四叉树源码。
为什么要有四叉树?
有一个算法名为flocking算法,作用是让一群单位模拟群行为的,这意味着每一个单位都需要获取周围邻居的信息,这里我们可以很容易地想到两重for循环来遍历,但是这样的时间复杂度是o(n^2),是我们接受不了的,所以我们就迫切需要一种数据结构来优化这一情景,很显然四叉树可以胜任,他可以用o(2*logn)的时间复杂度来寻找邻居对象和删除指定对象,用o(2*n*logn)的时间复杂度来为一群对象构建树,用o(n)的时间复杂度clear;
四叉树的思路。
我们可以看上面这副图,可以发现,我们将一个区域划分4等分,并对其中一部分划分出来的区间再进行划分,形成一个递归过程。
我们将一个区域划分成多个子区域,并在子区域中存储对象,一个区域的对象只与存储该对象的长辈区域【包含该区域的区域被称为该区域的长辈区域】和本区域以及晚辈区域【被该区域包含的区域被成为该区域的晚辈区域】的对象进行距离比较,如果距离满足,那么我们就视为其为邻居对象;
经过这么一个区域划分,我们可以忽略掉大部分不可能成为该对象的邻居对象的对象,因为是采用了二分的思路,所以查询效率是非常高的;
四叉树在游戏中的运用主要是获取某一片区域中的对象,比如RTS游戏中的框选单位;
四叉树的源码解析。
实现我们先定义节点
template<class T>
class QTreeNode {
public:QTreeNode<T>* son[4];//该节点的4个孩子节点QTreeNode<T>* Father;//该节点的父节点std::list<T*> Data;//该节点存储对象的容器SquareArea<float> Bound;//区域QTreeNode(SquareArea<float> bound):Bound(bound) {for (int i = 0; i < 4; i++) {son[i] = nullptr;}}QTreeNode(){}/*Quadrant3 20 1*/void InstantiateNode() {//将区级分裂Pair<float> P1(Bound.BottomLeft.X, Bound.BottomLeft.Y + Bound.H / 2);Pair<float> P2(Bound.BottomLeft.X + Bound.W / 2, Bound.BottomLeft.Y);Pair<float> P3(Bound.Center.X, Bound.Center.Y + Bound.H / 2);Pair<float> P4(Bound.Center.X + Bound.W / 2, Bound.Center.Y);son[0] = new QTreeNode(SquareArea<float>(P1, P2));son[1] = new QTreeNode(SquareArea<float>(Bound.Center, Bound.BottomRight));son[2] = new QTreeNode(SquareArea<float>(P3, P4));son[3] = new QTreeNode(SquareArea<float>(Bound.TopLeft, Bound.Center));}~QTreeNode() {}};
其中SquareArea是已经写好的一个矩形区域类,主要作用是描绘平面空间中的一个矩形。
然后是四茶树管理类
template<class T>
class QTree {QTreeNode<T>* Head;int MaxData;//默认为1,为1时效率高int PretreatmentDeep;//预处理深度,这里可以选择性地调用,作用是先将区间划分n次,而且这些区间不存储对象,这种行为在某些情况下可以增加效率,在某些情况下会降低效率,这里本菜没有过多的研究SquareArea<float> TreeBound;//这个四叉树所覆盖的区域,也就是头节点所代表的矩形void pushBody(QTreeNode<T>* Node, T* Data, int Deep = 0);void extractBody(QTreeNode<T>* Node,SquareArea<float>* Bound, std::list<T*>* List);void extractBody(QTreeNode<T>* Node, CircularArea<float>* Bound, std::list<T*>* List);void clearBody(QTreeNode<T>* Node);
public:void Pretreatment(int Deep = 0) {//预处理if (Deep < PretreatmentDeep && Nodes->son[0] == nullptr) {Nodes->InstantiateNode();for (int i = 0; i < 4; i++) {Pretreatment(Deep + 1);}}}QTree(SquareArea<float> Bound,int Deep);void push(T* Data) { pushBody(Head, Data, 0); }//insert operatestd::list<T*> extract(SquareArea<float>* Bound){//提取一个矩形区间的对象std::list<T*> *List = new std::list<T*>();extractBody(Head, Bound, List);return List;}std::list<T*> extract(CircularArea<float>* Bound) {//提取一个圆形区域的对象std::list<T*> *List = new std::list<T*>();extractBody(Head, Bound, List);return List;}void clear() {//清除操作clearBody(Head);Head = new QTreeNode<T>(TreeBound);}void SetTreeBound(SquareArea<float> Bound) {//设置这个树所覆盖的区间Head->Bound = Bound;TreeBound = Bound;}~QTree() { clear(); }
};
下面是具体的代码实现;
插入代码的思路如下【这里考虑的是每个节点只存储一个对象】:
1、2、3ifelse语句
1:区间的孩子节点是否是空
- 是,进入2
- 不是,检测该区间的子区间是否与该对象有交集
- 有交集,那么我们进入该区间所代表的节点,进行1操作
- 无交集,查询下一个子区间,如果查询完毕,返回上一层节点
2:该区间是否满了
- 满了,将该区间进行分割,并查询子区域是否与对象有交集;
- 有交集,那么我们进入该区间所代表的节点,进行1操作
- 无交集,查询下一个子区间,如果查询完毕,返回上一层节点
- 没有满,进行3
3:将对象插入该节点,并返回上一个节点
提取的思路如下【这里考虑的是每个节点只存储一个对象】;
1:将该节点的对象放入到容器中,进行2
2:该节点的子节点是否为空
- 是,返回上一个节点
- 不是,进行3
3:查询该区域的子区域是否与该对象有交集
- 有,进入该节点,进行1
- 没有,查询下一个节点,如果查询完毕,返回上一层节点
clear操作的话,就不多介绍了,就是一个dfs进行后序遍历
template<class T>
void QTree<T>::pushBody(QTreeNode<T>* Node,T* Data,int Deep) {//When the MaxDeep is reached,insert directly//这里我选择不设置深度限制,并且不考虑预处理深度if (Node->Son[i]!=nullptr) {for (int i = 0; i < 4; i++) {if (IsInterSectSS(Node->Son[i]->Bound, Data.Bound)) {pushBody(Node->Son[i], Data, Deep + 1);}}}else if (Node->Data.size() >= MaxData) {Node->InstantiateNode();for (int i = 0; i < 4; i++) {if (IsInterSectSS(Node->Son[i]->Bound, Data.Bound)) {pushBody(Node->Son[i], Data, Deep + 1);}}}else if (Node->Data.size() < MaxData) {Node->Data.push_back(Data);}}template<class T>
void QTree<T>::extractBody(QTreeNode<T>* Node,SquareArea<float>* Bound, std::list<T*>* List) {for (auto t = Node->Data.begin(); t != Node->Data.end(); t++) {List->push_back(*t);}//如果子节点是if (Node->Son[0] == nullptr) return;//看4个象限是否与之有交集,如果有交集,那么我们就进入for (int i = 0; i < 4; i++) {if (IsInterSectSS(Node->Son[i]->Bound, Bound))//如果有交集extractBody(Node->Son[i], Bound, List);}}template<class T>
void QTree<T>::extractBody(QTreeNode<T>* Node, CircularArea<float>* Bound, std::list<T*>* List) {for (auto t = Node->Data.begin(); t != Node->Data.end(); t++) {List->push_back(*t);}//如果子节点是if (Node->Son[0] == nullptr) return;//看4个象限是否与之有交集,如果有交集,那么我们就进入for (int i = 0; i < 4; i++) {if (IsInterSectSC(Node->Son[i]->Bound, Bound))//如果有交集extractBody(Node->Son[i], Bound, List);}}template<class T>
void QTree<T>::clearBody(QTreeNode<T>* Node) {if (Node == nullptr) return;for (int i = 0; i < 4; i++) {clearBody(Node->Son[i]);}delete Node;return;
}template<class T>
QTree<T>::QTree(SquareArea<float> Bound,int Deep=3) {//预处理深度,默认5TreeBound = Bound;Head = new QTreeNode<T>(Bound);MaxData = 1;PretreatmentDeep = 3;
}
这篇关于RTS游戏开发:基于四叉树的平面管理系统【加源码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!