[足式机器人]Part2 Dr. CAN学习笔记-Ch00-2 - 数学知识基础

2024-02-28 06:20

本文主要是介绍[足式机器人]Part2 Dr. CAN学习笔记-Ch00-2 - 数学知识基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文仅供学习使用
本文参考:
B站:DR_CAN
《控制之美(卷1)》 王天威
《控制之美(卷2)》 王天威

Dr. CAN学习笔记-Ch00 - 数学知识基础 Part2

  • 4. Ch0-4 线性时不变系统中的冲激响应与卷积
    • 4.1 LIT System:Linear Time Invariant
    • 4.2 卷积 Convolution
    • 4.3 单位冲激 Unit Impulse——Dirac Delta
    • 4.4 LIT 线性时不变系统状态空间方程的解
  • 5. Ch0-5 Laplace Transform of Convolution卷积的拉普拉斯变换
  • 6. Ch0-6 复数Complex Number
  • 7. Ch0-7 欧拉公式的证明
  • 8. Ch0-8 Matlab/Simulink传递函数Transfer Function
  • 9. Ch0-9 阈值选取-机器视觉中应用正态分布和6-sigma
  • 10. 连续系统离散化
    • 10.1 系统离散化的基本概念
    • 10.2 连续系统状态空间方程离散化

4. Ch0-4 线性时不变系统中的冲激响应与卷积

4.1 LIT System:Linear Time Invariant

  • 运算operator : O { ⋅ } O\left\{ \cdot \right\} O{}
    I n p u t O { f ( t ) } = o u t p u t x ( t ) \begin{array}{c} Input\\ O\left\{ f\left( t \right) \right\}\\ \end{array}=\begin{array}{c} output\\ x\left( t \right)\\ \end{array} InputO{f(t)}=outputx(t)

  • 线性——叠加原理superpositin principle
    { O { f 1 ( t ) + f 2 ( t ) } = x 1 ( t ) + x 2 ( t ) O { a f 1 ( t ) } = a x 1 ( t ) O { a 1 f 1 ( t ) + a 2 f 2 ( t ) } = a 1 x 1 ( t ) + a 2 x 2 ( t ) \begin{cases} O\left\{ f_1\left( t \right) +f_2\left( t \right) \right\} =x_1\left( t \right) +x_2\left( t \right)\\ O\left\{ af_1\left( t \right) \right\} =ax_1\left( t \right)\\ O\left\{ a_1f_1\left( t \right) +a_2f_2\left( t \right) \right\} =a_1x_1\left( t \right) +a_2x_2\left( t \right)\\ \end{cases} O{f1(t)+f2(t)}=x1(t)+x2(t)O{af1(t)}=ax1(t)O{a1f1(t)+a2f2(t)}=a1x1(t)+a2x2(t)

  • 时不变Time Invariant:
    O { f ( t ) } = x ( t ) ⇒ O { f ( t − τ ) } = x ( t − τ ) O\left\{ f\left( t \right) \right\} =x\left( t \right) \Rightarrow O\left\{ f\left( t-\tau \right) \right\} =x\left( t-\tau \right) O{f(t)}=x(t)O{f(tτ)}=x(tτ)

4.2 卷积 Convolution

卷积与微分方程:

  • 线性时不变系统的输出与输入之间是卷积的关系
  • 单位冲激响应可以完整地描述线性时不变系统。
  • 微分方程可以直接描述系统输入与输出之间的卷积关系。

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/1dd93a8fa99f4c5ab602e564d9206728.pn
在这里插入图片描述

4.3 单位冲激 Unit Impulse——Dirac Delta

单位冲击函数(Unit Impulse),又称为狄拉克函数(Dirac Delta),是一个宽度为0、面积为1的函数,这是一个纯数学函数

LIT系统, h ( t ) h(t) h(t)可以完全定义系统, 是系统对于冲激函数δ(t)(mpulse Response) 的冲激响应

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/44d3e236647442a3ba8a85c7024b461b.png
在这里插入图片描述

4.4 LIT 线性时不变系统状态空间方程的解

状态空间方程是指将系统描述为一组关于状态和输人的微分方程以及代表输出的代数方程的形式。
d x ( t ) d t = A x ( t ) + B u ( t ) y ( t ) = C x ( t ) + D u ( t ) \frac{\mathrm{d}x\left( t \right)}{\mathrm{d}t}=Ax\left( t \right) +Bu\left( t \right) \\ y\left( t \right) =Cx\left( t \right) +Du\left( t \right) dtdx(t)=Ax(t)+Bu(t)y(t)=Cx(t)+Du(t)
A A A是一个 n × n n\times n n×n 矩阵,表示系统状态变量之间的关系,称为状态矩阵或者系统矩阵
B B B 是一个 n × p n\times p n×p 矩阵,表示输人对状态量的影响,称为输入矩阵或者控制矩阵
C C C 是一个 m × n m\times n m×n 矩阵,表示系统的输出与系统状态变量的关系,称为输出矩阵
D D D 是一个 m × p m\times p m×p 矩阵,表示系统的输人直接作用在系统输出的部分,称为直接传递矩阵

在这里插入图片描述
在这里插入图片描述

结合前面的分析可以发现,当矩阵 A A A的特征值实部部分都小于0时,状态转移矩阵 e A ( t − t 0 ) e^{A(t-t_0)} eA(tt0)将随着时间的增加趋向于0,这是系统稳定性分析的基础。

对于时变系统,在一般情况下不容易找到解析解,多采用数值求解的方法,这不在本书的讨论范围之内。

5. Ch0-5 Laplace Transform of Convolution卷积的拉普拉斯变换

线性时不变系统 : LIT System
冲激响应:Impluse Response
卷积:Convolution

Laplace Transform : X ( s ) = L [ x ( t ) ] = ∫ 0 ∞ x ( t ) e − s t d t X\left( s \right) =\mathcal{L} \left[ x\left( t \right) \right] =\int_0^{\infty}{x\left( t \right) e^{-st}}\mathrm{d}t X(s)=L[x(t)]=0x(t)estdt

Convolution : x ( t ) ∗ g ( t ) = ∫ 0 t x ( τ ) g ( t − τ ) d τ x\left( t \right) *g\left( t \right) =\int_0^t{x\left( \tau \right) g\left( t-\tau \right)}\mathrm{d}\tau x(t)g(t)=0tx(τ)g(tτ)dτ

证明: L [ x ( t ) ∗ g ( t ) ] = X ( s ) G ( s ) \mathcal{L} \left[ x\left( t \right) *g\left( t \right) \right] =X\left( s \right) G\left( s \right) L[x(t)g

这篇关于[足式机器人]Part2 Dr. CAN学习笔记-Ch00-2 - 数学知识基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754625

相关文章

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的