2.2.11 hadoop体系之离线计算-mapreduce分布式计算-案例:Reduce端实现Join

本文主要是介绍2.2.11 hadoop体系之离线计算-mapreduce分布式计算-案例:Reduce端实现Join,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.需求分析

2.数据展示

3.实现机制

3.1 ReduceJoinMapper:定义Mapper

3.2 ReduceJoinReducer:定义Reducer

3.3 JobMain:定义Main方法

4.运行并查看结果

4.1 准备数据

4.2 运行结果


1.需求分析

假如数据量巨大,两表的数据是以文件的形式存储在 HDFS 中, 需要用 MapReduce 程 序来实现以下 SQL 查询运算

select a.id,a.date,b.name,b.category_id,b.price from t_order a left
join t_product b on a.pid = b.id

2.数据展示

3.实现机制

通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联。

代码结构:

 

3.1 ReduceJoinMapper:定义Mapper

package ucas.mapreduce_reduce_join;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;import java.io.IOException;public class ReduceJoinMapper extends Mapper<LongWritable,Text,Text,Text> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//首先判断数据来自哪个文件FileSplit fileSplit = (FileSplit) context.getInputSplit();String fileName = fileSplit.getPath().getName();if(fileName.equals("orders.txt")){//获取pidString[] split = value.toString().split(",");context.write(new Text(split[2]), value);}else{//获取pidString[] split = value.toString().split(",");context.write(new Text(split[0]), value);}}
}

3.2 ReduceJoinReducer:定义Reducer

package ucas.mapreduce_reduce_join;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class ReduceJoinReducer extends Reducer<Text, Text, Text, Text> {@Overrideprotected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {String first = "";String second = "";for (Text value : values) {if (value.toString().startsWith("p")) {first = value.toString();} else {second = value.toString();}}if (first.equals("")) {context.write(key, new Text("NULL" + "\t" + second));} else {context.write(key, new Text(first + "\t" + second));}}
}

3.3 JobMain:定义Main方法

package ucas.mapreduce_reduce_join;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;public class JobMain extends Configured implements Tool {@Overridepublic int run(String[] strings) throws Exception {//创建一个任务对象Job job = Job.getInstance(super.getConf(), "mapreduce_reduce_join");//打包放在集群运行时,需要做一个配置job.setJarByClass(JobMain.class);//第一步:设置读取文件的类: K1 和V1job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/input/reduce_join"));//第二步:设置Mapper类job.setMapperClass(ReduceJoinMapper.class);//设置Map阶段的输出类型: k2 和V2的类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(Text.class);//第三,四,五,六步采用默认方式(分区,排序,规约,分组)//第七步 :设置文的Reducer类job.setReducerClass(ReduceJoinReducer.class);//设置Reduce阶段的输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);//第八步:设置输出类job.setOutputFormatClass(TextOutputFormat.class);//设置输出的路径TextOutputFormat.setOutputPath(job, new Path("hdfs://node01:8020/out/reduce_join_out"));boolean b = job.waitForCompletion(true);return b ? 0 : 1;}public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();//启动一个任务int run = ToolRunner.run(configuration, new JobMain(), args);System.exit(run);}}

4.运行并查看结果

4.1 准备数据

4.2 运行结果

运行命令:hadoop jar day04_mapreduce_combiner-1.0-SNAPSHOT.jar ucas.mapreduce_reduce_join.JobMain

可以看到,我们实现了联合查询操作,还是比较简单的。

这篇关于2.2.11 hadoop体系之离线计算-mapreduce分布式计算-案例:Reduce端实现Join的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754520

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很