2.2.2 hadoop体系之离线计算-mapreduce分布式计算-WordCount案例

本文主要是介绍2.2.2 hadoop体系之离线计算-mapreduce分布式计算-WordCount案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.需求

2.数据准备

2.1 创建一个新文件

2.2 其中放入内容并保存

2.3 上传到HDFS系统

3.IDEA写程序

3.1 pom

3.2 Mapper

3.3 Reduce

3.4 定义主类,描述Job并且提交Job

3.5 在IDEA中打包成jar包,上传到node01中的 /export/software中

4.运行jar包,并且查看运行情况


1.需求

        在一堆给定的文本文件中统计输出每一个单词出现的总次数

2.数据准备

2.1 创建一个新文件

cd /export/servers
vim wordcount.txt

2.2 其中放入内容并保存

hello,world,hadoop
hive,sqoop,flume,hello
kitty,tom,jerry,world
hadoop

2.3 上传到HDFS系统

hdfs dfs ‐mkdir /wordcount/
hdfs dfs ‐put wordcount.txt /wordcount/

3.IDEA写程序

3.1 pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>cn.itcast</groupId><artifactId>day03_mapreduce_wordcount</artifactId><version>1.0-SNAPSHOT</version><packaging>jar</packaging><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><source>6</source><target>6</target></configuration></plugin></plugins></build><repositories><repository><id>cloudera</id><url>https://repository.cloudera.com/artifactory/cloudera-repos/</url></repository></repositories><dependencies><dependency><groupId>jdk.tools</groupId><artifactId>jdk.tools</artifactId><version>1.8</version><scope>system</scope><systemPath>${JAVA_HOME}/lib/tools.jar</systemPath></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.0.0</version><scope>provided</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.0.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs-client</artifactId><version>3.0.0</version><scope>provided</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.0.0</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test</scope></dependency><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter</artifactId><version>RELEASE</version><scope>compile</scope></dependency></dependencies></project>

3.2 Mapper

package com.ucas.mapredece;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;/*** @author GONG* @version 1.0* @date 2020/10/8 23:19*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {@Overridepublic void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException {String line = value.toString();String[] split = line.split(",");for (String word : split) {context.write(new Text(word), new LongWritable(1));}}
}

3.3 Reduce

package com.ucas.mapredece;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** @author GONG* @version 1.0* @date 2020/10/8 23:20*/
class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {@Overrideprotected void reduce(Text key, Iterable<LongWritable> values,Context context) throws IOException, InterruptedException {long count = 0;for (LongWritable value : values) {count += value.get();}context.write(key, new LongWritable(count));}
}

3.4 定义主类,描述Job并且提交Job

package com.ucas.mapredece;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.conf.Configured;public class JobMain extends Configured implements Tool {@Overridepublic int run(String[] args) throws Exception {Job job = Job.getInstance(super.getConf(), JobMain.class.getSimpleName());//打包到集群上面运行时候,必须要添加以下配置,指定程序的main函数job.setJarByClass(JobMain.class);//第一步:读取输入文件解析成key,value对job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://192.168.0.101:8020/wordcount"));//第二步:设置我们的mapper类job.setMapperClass(WordCountMapper.class);//设置我们map阶段完成之后的输出类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(LongWritable.class);//第三步,第四步,第五步,第六步,省略//第七步:设置我们的reduce类job.setReducerClass(WordCountReducer.class);//设置我们reduce阶段完成之后的输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);//第八步:设置输出类以及输出路径job.setOutputFormatClass(TextOutputFormat.class);TextOutputFormat.setOutputPath(job, new Path("hdfs://192.168.0.101:8020/wordcount_out"));//上面那个路径时不允许存在的,会帮我们自动创建这个文件夹boolean b = job.waitForCompletion(true);return b ? 0 : 1;}/*** 程序main函数的入口类** @param args* @throws Exception*/public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();Tool tool = new JobMain();int run = ToolRunner.run(configuration, tool, args);System.exit(run);}
}

3.5 在IDEA中打包成jar包,上传到node01中 /export/software中

4.运行jar包,并且查看运行情况

进入:cd /export/software

运行命令: hadoop jar day03_mapreduce_wordcount-1.0-SNAPSHOT.jar com.ucas.mapredece.JobMain

[root@node01 software]# hadoop jar day03_mapreduce_wordcount-1.0-SNAPSHOT.jar com.ucas.mapredece.JobMain
2020-10-09 20:47:59,083 INFO client.RMProxy: Connecting to ResourceManager at node01/192.168.0.101:8032
2020-10-09 20:48:00,154 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1602247634978_0001
2020-10-09 20:48:01,299 INFO input.FileInputFormat: Total input files to process : 1
2020-10-09 20:48:01,532 INFO mapreduce.JobSubmitter: number of splits:1
2020-10-09 20:48:01,592 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
2020-10-09 20:48:01,892 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1602247634978_0001
2020-10-09 20:48:01,894 INFO mapreduce.JobSubmitter: Executing with tokens: []
2020-10-09 20:48:02,961 INFO conf.Configuration: resource-types.xml not found
2020-10-09 20:48:02,961 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2020-10-09 20:48:03,741 INFO impl.YarnClientImpl: Submitted application application_1602247634978_0001
2020-10-09 20:48:03,825 INFO mapreduce.Job: The url to track the job: http://node01:8088/proxy/application_1602247634978_0001/
2020-10-09 20:48:03,826 INFO mapreduce.Job: Running job: job_1602247634978_0001
2020-10-09 20:48:19,613 INFO mapreduce.Job: Job job_1602247634978_0001 running in uber mode : false
2020-10-09 20:48:19,642 INFO mapreduce.Job:  map 0% reduce 0%
2020-10-09 20:48:28,806 INFO mapreduce.Job:  map 100% reduce 0%
2020-10-09 20:48:34,851 INFO mapreduce.Job:  map 100% reduce 100%
2020-10-09 20:48:35,916 INFO mapreduce.Job: Job job_1602247634978_0001 completed successfully
2020-10-09 20:48:36,200 INFO mapreduce.Job: Counters: 53File System CountersFILE: Number of bytes read=197FILE: Number of bytes written=431667FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=185HDFS: Number of bytes written=70HDFS: Number of read operations=8HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=1Launched reduce tasks=1Data-local map tasks=1Total time spent by all maps in occupied slots (ms)=6124Total time spent by all reduces in occupied slots (ms)=3936Total time spent by all map tasks (ms)=6124Total time spent by all reduce tasks (ms)=3936Total vcore-milliseconds taken by all map tasks=6124Total vcore-milliseconds taken by all reduce tasks=3936Total megabyte-milliseconds taken by all map tasks=6270976Total megabyte-milliseconds taken by all reduce tasks=4030464Map-Reduce FrameworkMap input records=4Map output records=12Map output bytes=167Map output materialized bytes=197Input split bytes=114Combine input records=0Combine output records=0Reduce input groups=9Reduce shuffle bytes=197Reduce input records=12Reduce output records=9Spilled Records=24Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=168CPU time spent (ms)=2310Physical memory (bytes) snapshot=487010304Virtual memory (bytes) snapshot=4846088192Total committed heap usage (bytes)=302223360Peak Map Physical memory (bytes)=372805632Peak Map Virtual memory (bytes)=2409140224Peak Reduce Physical memory (bytes)=114204672Peak Reduce Virtual memory (bytes)=2436947968Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=71File Output Format Counters Bytes Written=70
[root@node01 software]# 

运行结果:

这篇关于2.2.2 hadoop体系之离线计算-mapreduce分布式计算-WordCount案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754513

相关文章

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp