2.2.2 hadoop体系之离线计算-mapreduce分布式计算-WordCount案例

本文主要是介绍2.2.2 hadoop体系之离线计算-mapreduce分布式计算-WordCount案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.需求

2.数据准备

2.1 创建一个新文件

2.2 其中放入内容并保存

2.3 上传到HDFS系统

3.IDEA写程序

3.1 pom

3.2 Mapper

3.3 Reduce

3.4 定义主类,描述Job并且提交Job

3.5 在IDEA中打包成jar包,上传到node01中的 /export/software中

4.运行jar包,并且查看运行情况


1.需求

        在一堆给定的文本文件中统计输出每一个单词出现的总次数

2.数据准备

2.1 创建一个新文件

cd /export/servers
vim wordcount.txt

2.2 其中放入内容并保存

hello,world,hadoop
hive,sqoop,flume,hello
kitty,tom,jerry,world
hadoop

2.3 上传到HDFS系统

hdfs dfs ‐mkdir /wordcount/
hdfs dfs ‐put wordcount.txt /wordcount/

3.IDEA写程序

3.1 pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>cn.itcast</groupId><artifactId>day03_mapreduce_wordcount</artifactId><version>1.0-SNAPSHOT</version><packaging>jar</packaging><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><source>6</source><target>6</target></configuration></plugin></plugins></build><repositories><repository><id>cloudera</id><url>https://repository.cloudera.com/artifactory/cloudera-repos/</url></repository></repositories><dependencies><dependency><groupId>jdk.tools</groupId><artifactId>jdk.tools</artifactId><version>1.8</version><scope>system</scope><systemPath>${JAVA_HOME}/lib/tools.jar</systemPath></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.0.0</version><scope>provided</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.0.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs-client</artifactId><version>3.0.0</version><scope>provided</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.0.0</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test</scope></dependency><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter</artifactId><version>RELEASE</version><scope>compile</scope></dependency></dependencies></project>

3.2 Mapper

package com.ucas.mapredece;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;/*** @author GONG* @version 1.0* @date 2020/10/8 23:19*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {@Overridepublic void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException {String line = value.toString();String[] split = line.split(",");for (String word : split) {context.write(new Text(word), new LongWritable(1));}}
}

3.3 Reduce

package com.ucas.mapredece;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** @author GONG* @version 1.0* @date 2020/10/8 23:20*/
class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {@Overrideprotected void reduce(Text key, Iterable<LongWritable> values,Context context) throws IOException, InterruptedException {long count = 0;for (LongWritable value : values) {count += value.get();}context.write(key, new LongWritable(count));}
}

3.4 定义主类,描述Job并且提交Job

package com.ucas.mapredece;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.conf.Configured;public class JobMain extends Configured implements Tool {@Overridepublic int run(String[] args) throws Exception {Job job = Job.getInstance(super.getConf(), JobMain.class.getSimpleName());//打包到集群上面运行时候,必须要添加以下配置,指定程序的main函数job.setJarByClass(JobMain.class);//第一步:读取输入文件解析成key,value对job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://192.168.0.101:8020/wordcount"));//第二步:设置我们的mapper类job.setMapperClass(WordCountMapper.class);//设置我们map阶段完成之后的输出类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(LongWritable.class);//第三步,第四步,第五步,第六步,省略//第七步:设置我们的reduce类job.setReducerClass(WordCountReducer.class);//设置我们reduce阶段完成之后的输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);//第八步:设置输出类以及输出路径job.setOutputFormatClass(TextOutputFormat.class);TextOutputFormat.setOutputPath(job, new Path("hdfs://192.168.0.101:8020/wordcount_out"));//上面那个路径时不允许存在的,会帮我们自动创建这个文件夹boolean b = job.waitForCompletion(true);return b ? 0 : 1;}/*** 程序main函数的入口类** @param args* @throws Exception*/public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();Tool tool = new JobMain();int run = ToolRunner.run(configuration, tool, args);System.exit(run);}
}

3.5 在IDEA中打包成jar包,上传到node01中 /export/software中

4.运行jar包,并且查看运行情况

进入:cd /export/software

运行命令: hadoop jar day03_mapreduce_wordcount-1.0-SNAPSHOT.jar com.ucas.mapredece.JobMain

[root@node01 software]# hadoop jar day03_mapreduce_wordcount-1.0-SNAPSHOT.jar com.ucas.mapredece.JobMain
2020-10-09 20:47:59,083 INFO client.RMProxy: Connecting to ResourceManager at node01/192.168.0.101:8032
2020-10-09 20:48:00,154 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1602247634978_0001
2020-10-09 20:48:01,299 INFO input.FileInputFormat: Total input files to process : 1
2020-10-09 20:48:01,532 INFO mapreduce.JobSubmitter: number of splits:1
2020-10-09 20:48:01,592 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
2020-10-09 20:48:01,892 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1602247634978_0001
2020-10-09 20:48:01,894 INFO mapreduce.JobSubmitter: Executing with tokens: []
2020-10-09 20:48:02,961 INFO conf.Configuration: resource-types.xml not found
2020-10-09 20:48:02,961 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2020-10-09 20:48:03,741 INFO impl.YarnClientImpl: Submitted application application_1602247634978_0001
2020-10-09 20:48:03,825 INFO mapreduce.Job: The url to track the job: http://node01:8088/proxy/application_1602247634978_0001/
2020-10-09 20:48:03,826 INFO mapreduce.Job: Running job: job_1602247634978_0001
2020-10-09 20:48:19,613 INFO mapreduce.Job: Job job_1602247634978_0001 running in uber mode : false
2020-10-09 20:48:19,642 INFO mapreduce.Job:  map 0% reduce 0%
2020-10-09 20:48:28,806 INFO mapreduce.Job:  map 100% reduce 0%
2020-10-09 20:48:34,851 INFO mapreduce.Job:  map 100% reduce 100%
2020-10-09 20:48:35,916 INFO mapreduce.Job: Job job_1602247634978_0001 completed successfully
2020-10-09 20:48:36,200 INFO mapreduce.Job: Counters: 53File System CountersFILE: Number of bytes read=197FILE: Number of bytes written=431667FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=185HDFS: Number of bytes written=70HDFS: Number of read operations=8HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=1Launched reduce tasks=1Data-local map tasks=1Total time spent by all maps in occupied slots (ms)=6124Total time spent by all reduces in occupied slots (ms)=3936Total time spent by all map tasks (ms)=6124Total time spent by all reduce tasks (ms)=3936Total vcore-milliseconds taken by all map tasks=6124Total vcore-milliseconds taken by all reduce tasks=3936Total megabyte-milliseconds taken by all map tasks=6270976Total megabyte-milliseconds taken by all reduce tasks=4030464Map-Reduce FrameworkMap input records=4Map output records=12Map output bytes=167Map output materialized bytes=197Input split bytes=114Combine input records=0Combine output records=0Reduce input groups=9Reduce shuffle bytes=197Reduce input records=12Reduce output records=9Spilled Records=24Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=168CPU time spent (ms)=2310Physical memory (bytes) snapshot=487010304Virtual memory (bytes) snapshot=4846088192Total committed heap usage (bytes)=302223360Peak Map Physical memory (bytes)=372805632Peak Map Virtual memory (bytes)=2409140224Peak Reduce Physical memory (bytes)=114204672Peak Reduce Virtual memory (bytes)=2436947968Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=71File Output Format Counters Bytes Written=70
[root@node01 software]# 

运行结果:

这篇关于2.2.2 hadoop体系之离线计算-mapreduce分布式计算-WordCount案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754513

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于