《Large Language Models for Generative Information Extraction: A Survey》阅读笔录

本文主要是介绍《Large Language Models for Generative Information Extraction: A Survey》阅读笔录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:Large Language Models for Generative Information Extraction: A Survey

前言

映像中,比较早地使用“大模型“”进行信息抽取的一篇论文是2022年发表的《Unified Structure Generation for Universal Information Extraction》,也是我们常说的UIE模型,其主要在T5-v1.1模型的基础上训练一个Text to structure 的UIE基座模型,然后在具体的业务上再进行Fine-tuning。T5也算是比较早期的的大语言模型了。

时至今日,chatgpt问世后,各种大模型也不断涌现。大模型在理解能力和生成能力上表现出了非凡的能力。也因为LLM有这么强大的能力,业界已经提出了许多工作来利用 LLM 的能力,并为基于生成范式的 IE 任务提供一些可行的解决方案。下面我们就跟着《Large Language Models for Generative Information Extraction: A Survey》来看看LLM在IE任务的一些任务上是如何实现的。

信息抽取回顾

信息提取 (IE) 是自然语言处理中的一个关键领域,它将纯文本转换为结构化知识。IE 是对各种下游任务的基本要求,例如知识图谱构建、知识推理和问答等。常见的IE任务主要包含命名实体识别NER,关系抽取RE,事件抽取EE。传统的信息抽取主要使用序列标注、指针抽取等方法从原文中提取(带有抽取元素location)。

LLM时代的信息抽取(生成式)

生成式的信息提取,可以建模成如下公式:

在这里插入图片描述
公式中的参数也比较好理解:

  • θ \theta θ LLMs参数,可以固定也可以继续训练
  • X X X 待提取的文本
  • Y Y Y 预期生成后的结果
  • P P P,LLM时代比较有特色的参数,就是基于输入 X X X的提示prompt或者说是指令instructions

目标就是最大化最大化这个条件概率。对于不同的IE子任务来说,虽然输入 X X X,但是最终期望LLM输出的结果 Y Y Y有所不同,:

  • NER,NER包含两个子任务:实体识别出来和将识别出来的实体进行下一步的分类
  • RE,实体识别使用关系抽取的基础,关系抽取可以根据具体的业务进行分类:1.关系分类,2.关系三元组的识别,识别头尾实体以及对应的关系;3.更加严格的识别头尾实体类型以及对应的关系
  • EE,事件抽取可以分为两个子任务:1.事件检测(识别事件触发词以及触发词的类型);2.事件要素提取

下面看看使用LLM做几个任务的方法的概览如下:
在这里插入图片描述

NER

主流的方法在主流的数据集上的表现情况如下:
在这里插入图片描述

表说明:

  • Cross-Domain Learning (CDL),跨领域学习
  • Zero-Shot Prompting (ZS Pr),
  • In-Context Learning (ICL)
  • Supervised Fine-Tuning (SFT)
  • Data Augmentation (DA).
  • Uni. ? 表示模型是否是统一的抽取模型(完成多种任务)

可以得出的结论是:

  1. few-shot和zero-shot相比于SFT和DA还是有比较大的差距;
  2. 即使都是用ICL,GPT-NER与其他同样使用ICL的方法相比差距小的有6%,大的能够达19%
  3. 相比于ICL,使用SFT的方法,即使使用的基座模型参数有的差距会有很大,但是最后的指标却差距不大

RE

一些主要的方法实现的效果如下:
在这里插入图片描述
可以得出的结论是:

  1. 统一抽取的模型更偏向处理复杂的关系(头尾实体、实体类型,实体关系);
  2. 特定的任务则不是统一的抽取方式,不过解决的是比较简单关系分类;
  3. 与NER相比关系抽取的效果比NER差不少,提升的空间还很大

统一的信息抽取

该框架旨在为所有IE任务建模,获取IE的通用能力,并学习多个任务之间的依赖关系。现有的研究将这种Uni-IE划分为:natural language-based LLMs (NL-LLMs) 和 code-based LLMs (code-LLMs),参见下图:
在这里插入图片描述

NL-LLMs:比较早的还是文中开头中提到的UIE模型,也就是一种text2structure结构。此外还有:InstructUIE、ChatIE等。

其中UIE《Unified Structure Generation for Universal Information Extraction》,提出一个统一的从文本到结构的生成框架,该框架可对外延结构进行编码,并通过结构化提取语言捕捉常见的IE能力。
在这里插入图片描述
InstructUIE《InstructUIE: Multi-task Instruction Tuning for Unified Information Extraction》,通过结构化专家编写的指令来微调LLM,从而增强UIE,以一致地模拟不同的IE任务并捕捉任务间的依赖性.
在这里插入图片描述
ChatIE《Zero-Shot Information Extraction via Chatting with ChatGPT》, 探索了如何在zero-shot提示中使用GPT3和ChatGPT等LLM,将任务转化为多轮问题解答问题.
在这里插入图片描述

Code-LLMs:LLM根据需要抽取的文本,将实体和关系放到代码的class中。例如:Code4UIE、CodeKGC、GoLLIE等。

Code4UIE《Retrieval-Augmented Code Generation for Universal Information Extraction》提出一个通用的检索增强代码生成框架,利用Python类来定义模式,并使用上下文学习来生成从文本中提取结构知识的代码
在这里插入图片描述
CodeKGC《CodeKGC: Code Language Model for Generative Knowledge Graph Construction》.利用代码中固有的结构知识,并采用模式感知提示和理性增强生成来提高性能。
在这里插入图片描述

不过从上表面的表来看,对于大多数数据集,具有SFT的uni-IE模型在NER、RE和EE任务中优于任务特定模型。

按照学习范式进行分类

学习范式主要分为:SFT、Zero-Shot、Few-Shot、数据增强几类。

  • SFT:输入所有训练数据来微调llm是最常见和最有前途的方法,它允许模型捕获数据中的底层结构模式,并很好地推广到看不见的IE任务。
  • Few-Shot:只能访问有限数量的标记示例,这导致了过度拟合和难以捕获复杂关系等挑战。但与小型预训练模型相比,扩大llm的参数使它们具有惊人的泛化能力,使它们能够在少数场景中也能获得出色的性能。
  • Zero-Shot:主要挑战在于使模型能够有效地泛化它尚未训练过的任务和领域,以及对齐预训练的LLM范式。由于大量的知识嵌入其中,llm在未知任务的zero-shot场景中表现出令人印象深刻的能力
  • 数据增强:数据增强包括生成有意义和多样化的数据,以有效地增强训练示例或信息,同时避免引入不现实的、误导性的和偏移的模式。

特别要说的是数据增强这块,信息抽取最大的问题就是训练数据的问题,数据增强生成有意义的多样化数据,以有效增强训练示例或信息,同时避免引入不切实际、误导性和偏移的模式。主流方法可大致分为3种策略:

在这里插入图片描述

  1. 数据标注,使用LLM直接生成带有标签的数据;
    LLMaAA《LLMaAA: Making Large Language Models as Active Annotators》,通过在主动学习环路中使用LLMs作为标注器来提高准确性和数据效率,从而优化标注和训练过程.
    在这里插入图片描述
    在这里插入图片描述

  2. 知识检索,该策略从 LLM 中检索 IE 的相关知识;
    PGIM《Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined Knowledge》 为多模态NER提出了一个两阶段框架,利用ChatGPT作为隐式知识库,启发式地检索辅助知识,以提高实体预判词的效率。
    在这里插入图片描述

  3. 反向生成,这种策略促使LLM根据作为输入的结构数据生成自然文本或问题,与LLM的训练范式保持一致。
    SynthIE《Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and The Case of Information Extraction》 使用输入的结构数据生成自然文本。
    在这里插入图片描述

未来方向

在这里插入图片描述
想把 LLM应用到实际的IE系统中还为时过早,也就意味着会有更多的机会和提升。例如:

  1. 真正意义上的Universal IE, 进一步开发能够灵活适应不同领域和任务的通用IE框架是一个很有前途的研究方向;
  2. Low-Resource IE;
  3. Prompt Design for IE, 更好的prompt和instructions设计方式
  4. Open IE,比较大的挑战

总结

总的来说,使用LLM做信息抽取与传统的方法还是存在比较大的差距。但LLM能够为超痛的信息抽取pipline赋能,至于未来LLM在信息抽取领域发展的什么程度,例如模型参数量级在很少的情况下使用一些sft数据就能够达到很好的效果下,那岂不是美哉。

Reference

1.2024开篇之大模型遇见信息抽取:常见数据增强、形式化语言及可练手小模型开源项目

这篇关于《Large Language Models for Generative Information Extraction: A Survey》阅读笔录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754506

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

【阅读文献】一个使用大语言模型的端到端语音概要

摘要 ssum框架(Speech Summarization)为了 从说话人的语音提出对应的文本二题出。 ssum面临的挑战: 控制长语音的输入捕捉 the intricate cross-mdoel mapping 在长语音输入和短文本之间。 ssum端到端模型框架 使用 Q-Former 作为 语音和文本的中介连接 ,并且使用LLMs去从语音特征正确地产生文本。 采取 multi-st

深度学习--对抗生成网络(GAN, Generative Adversarial Network)

对抗生成网络(GAN, Generative Adversarial Network)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。 1. 概念 GAN由两个神经网络组成:生成器(Generator)和判别器(D

高精度打表-Factoring Large Numbers

求斐波那契数,不打表的话会超时,打表的话普通的高精度开不出来那么大的数组,不如一个int存8位,特殊处理一下,具体看代码 #include<stdio.h>#include<string.h>#define MAX_SIZE 5005#define LEN 150#define to 100000000/*一个int存8位*/int num[MAX_SIZE][LEN];void