人工智能“面诊”识别罕见遗传疾病,准确率可达90%...

本文主要是介绍人工智能“面诊”识别罕见遗传疾病,准确率可达90%...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TB1SgVsGzTpK1RjSZKPXXa3UpXa.jpg

【 图片来源:Nature 】

近日,美国FDNA公司在国际知名医学科研期刊《自然医学》(Nature Medicine)上发布了题为《使用深度学习识别遗传疾病的面部表型》(Identifying facial phenotypes of genetic disorders using deep learning)的论文。论文阐述一个名为DeepGestalt的计算机视觉系统,能够通过面部识别诊断遗传疾病。论文表示,目前DeepGestalt已经能够诊断200多种不同的遗传综合症。在用三项典型遗传疾病对系统进行测试的过程中,DeepGestalt表现出优于临床医师识别遗传疾病的能力。

AI“面诊”罕见遗传疾病

论文提到,遗传疾病综合症影响了世界范围内8%的人口,许多综合症具有可识别的面部特征。例如患有德朗热综合症(Cornelia de Lange)的人往往有小鼻子和拱形眉毛;天使人综合症(Angelman)的异常表现是白皙的皮肤和头发。

FDNA是一家位于波士顿的数字健康公司,该公司的研究人员搭建了一个名为DeepGestalt的人工智能系统,该系统利用计算机视觉算法分析面部照片,凭借面部特征识别遗传疾病。

迄今为止,DeepGestalt已经分析了超过15万例病例。FDNA公司通过建立一个名为Face2Gene的智能手机应用程序,利用社区平台来积累数据,训练DeepGestalt。临床遗传学家可以免费使用该平台,在经患者同意的前提下将患者面部图像上传到平台。此次DeepGestalt研究中包含216种不同的综合征的17,000张诊断病例图像数据,就是由Face2Gene提供。

据雷锋网了解,此次研究人员利用DeepGestalt对德朗热综合症和天使人综合症进行两项测试。测试结果表明,当任务是区分患者是否患有某一种遗传综合症时,Deepgestalt的准确率超过90%,击败了专家临床医师,通常医生在类似测试中的准确率约为70%。在502张显示92种不同综合症患者的图像上进行测试时,Deepgestalt用了90%的时间对图像做出10种可能诊断,从而确定了目标疾病。

另外,研究人员还使用该模型对第三种称为努南综合症(Noonan)的不同遗传形式进行分类。在努南综合症患者的图像实验中,Deepgestalt需要测试出努南综合症中五个特定基因突变因素中哪一个致病因素最高。这项测试中,软件的准确度稍差,命中率为64%,但仍然比随机猜测的20%命中率要高得多。

在有些专家看来,DeepGestalt这类算法并不是识别遗传疾病的灵丹妙药。西奈山伊坎医学院教授和努南综合症专家Bruce Gelb博士表示,DeepGestalt是在年幼儿童的有限数据集上开发和测试的,可能难以识别老年人。另外也有声音质疑DeepGestalt存在种族歧视,算法对白种人的疾病识别率比黑种人识别率要高得多。

FDNA似乎意识到了这些缺点,因此该公司将DeepGestalt称为“参考工具” ,与其他人工智能软件一样,它可以帮助而不是取代人类诊断。

牛津大学(University of Oxford)专家克里斯托弗·内尔·克尔(Christoffer Nellåker)也表示,“这些极为罕见的疾病,诊断过程可能需要很多年。对于某些疾病,DeepGestalt将大大缩短诊断时间。对于其他人来说,它或许可以增加一种找到其他患有这种疾病的人的手段,从而有助于寻找新的治疗方法。”

录音也可判断遗传疾病

雷锋网(公众号:雷锋网)了解到,在诊断遗传疾病这件事情上,除了FDNA公司的面部识别方式,还有一些团队在关注人类声音中传递的遗传信号。

2017年,威斯康星大学麦迪逊威丝曼中心(University of Wisconsin–Madison’s Waisman Center)和威斯康星发现研究院( Wisconsin Institute for Discovery)研究得出仅靠5min录音判断某个人是否易患遗传疾病以及相关的并发症的系统。

雷锋网了解到,X染色体易损综合症的主要特征是智力下降和身体残疾,目前全世界有数百万人口携带突变前期脆弱的X染色体。具有这种特征的染色体会增加神经退行性疾病、不孕不育等病症的风险,此外携带该染色体的人群的后代也容易发生脆性X染色体综合征(fragile X syndrome)。

研究人员利用机器学习能力分析数百种语音记录,能够准确地识别携带突变前期的脆弱的X染色体的个体。

基于录音和机器学习算法,研究人员创建了语言和认知功能的列表,例如记录中的句子的平均长度或填充暂停的数量,音标的发音方法,这些特征可以有效区分出两组的不同。然而目前看来这项研究还不适合被临床使用,根据之前实验表明,这类录音机器学习算法仅能达到81%的区分准确性。

雷锋网版权文章,未经授权禁止转载。详情见转载须知。

这篇关于人工智能“面诊”识别罕见遗传疾病,准确率可达90%...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754195

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

[Day 73] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在健康管理中的應用實例 1. 引言 隨著健康管理需求的提升,人工智能(AI)在該領域的應用越來越普遍。AI可以幫助醫療機構提升效率、精準診斷疾病、個性化治療方案,以及進行健康數據分析,從而改善病患的健康狀況。這篇文章將探討AI如何應用於健康管理,並通過具體代碼示例說明其技術實現。 2. AI在健康管理中的主要應用場景 個性化健康建議:通過分析用戶的健康數據,如飲食、運動、睡眠等,AI可

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下:

BERN2(生物医学领域)命名实体识别与命名规范化工具

BERN2: an advanced neural biomedical named entity recognition and normalization tool 《Bioinformatics》2022 1 摘要 NER和NEN:在生物医学自然语言处理中,NER和NEN是关键任务,它们使得从生物医学文献中自动提取实体(如疾病和药物)成为可能。 BERN2:BERN2是一个工具,

行为智能识别摄像机

行为智能识别摄像机 是一种结合了人工智能技术和监控摄像技术的先进设备,它能够通过深度学习算法对监控画面进行实时分析,自动识别和分析监控画面中的各种行为动作。这种摄像机在安防领域有着广泛的应用,可以帮助监控人员及时发现异常行为,并采取相应的措施。 行为智能识别摄像机可以有效预防盗窃事件。在商场、超市等公共场所安装这种摄像机,可以通过识别异常行为等情况,及时报警并阻止不安全行为的发生

flutter开发实战-flutter build web微信无法识别二维码及小程序码问题

flutter开发实战-flutter build web微信无法识别二维码及小程序码问题 GitHub Pages是一个直接从GitHub存储库托管的静态站点服务,‌它允许用户通过简单的配置,‌将个人的代码项目转化为一个可以在线访问的网站。‌这里使用flutter build web来构建web发布到GitHub Pages。 最近通过flutter build web,通过发布到GitHu

知名AIGC人工智能专家培训讲师唐兴通谈AI大模型数字化转型数字新媒体营销与数字化销售

在过去的二十年里,中国企业在数字营销领域经历了一场惊心动魄的变革。从最初的懵懂无知到如今的游刃有余,这一路走来,既有模仿学习的艰辛,也有创新突破的喜悦。然而,站在人工智能时代的门槛上,我们不禁要问:下一个十年,中国企业将如何在数字营销的浪潮中乘风破浪? 一、从跟风到精通:中国数字营销的进化史 回顾过去,中国企业在数字营销领域的发展可谓是一部"跟风学习"的编年史。从最初的搜索引擎营销(SEM),