算法沉淀——动态规划之路径问题(leetcode真题剖析)

2024-02-26 20:20

本文主要是介绍算法沉淀——动态规划之路径问题(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之路径问题

  • 01.不同路径
  • 02.不同路径 II
  • 03.珠宝的最高价值
  • 04.下降路径最小和
  • 05.最小路径和
  • 06.地下城游戏

01.不同路径

题目链接:https://leetcode.cn/problems/unique-paths/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路

这是一个典型的动态规划问题。以下是解题的一般步骤:

  1. 状态表示: 对于路径类问题,有两种状态表示方式,选择其中之一。这里选择从起始位置出发,到达 [i, j] 位置的方式:

    dp[i][j] 表示从起始位置到达 [i, j] 位置的路径数。

  2. 状态转移方程: 分析从 [i, j] 位置出发的一小步,有两种情况:

    • [i-1, j] 位置向下走一步,转移到 [i, j] 位置;
    • [i, j-1] 位置向右走一步,转移到 [i, j] 位置。

    因此,状态转移方程为:dp[i][j] = dp[i-1][j] + dp[i][j-1]

  3. 初始化:dp 数组前添加一行和一列,初始化 dp[0][1] 位置为 1

  4. 填表顺序: 从上往下,每一行从左往右填写。

  5. 返回值: 返回 dp[m][n] 的值,表示从起始位置到达终点位置的路径数。

代码

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m+1,vector<int>(n+1,0));dp[1][1]=1;for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(i==1&&j==1) continue;dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m][n];}
};

02.不同路径 II

题目链接:https://leetcode.cn/problems/unique-paths-ii/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1 

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

思路

根据上题分析,这题如果某个位置 [i - 1, j] 或者 [i, j - 1] 上存在障碍物,说明从这两个位置到达 [i, j] 的路径是被阻挡的,因此在计算 dp[i][j](表示从起点到达 [i, j] 的路径数)时,可以直接将 dp[i][j] 设为零,其余同上题。

代码

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m=obstacleGrid.size(),n=obstacleGrid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));dp[1][0]=1;for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)if(obstacleGrid[i-1][j-1]==0)dp[i][j]=dp[i-1][j]+dp[i][j-1];return dp[m][n];}
};

03.珠宝的最高价值

题目链接:https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/

现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]

示例 1:

输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝

提示:

  • 0 < frame.length <= 200
  • 0 < frame[0].length <= 200

思路

在处理这类问题时,动态规划的状态表可以采用两种主要形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示从起始位置到达 [i, j] 位置时的最大价值。在考虑到达 [i, j] 的两种方式时,即从上方 [i - 1, j] 或从左侧 [i, j - 1] 到达,我们需要选择其中最大价值的路径。因此,状态转移方程为:

dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];

在初始化过程中,可以添加一个辅助结点,并将所有值初始化为零。填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们应该返回 dp[m][n] 的值,表示在整个网格中的最大价值。

代码

class Solution {
public:int jewelleryValue(vector<vector<int>>& frame) {int m=frame.size(),n=frame[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];return dp[m][n];}
};

04.下降路径最小和

题目链接:https://leetcode.cn/problems/minimum-falling-path-sum/

给你一个 n x n方形 整数数组 matrix ,请你找出并返回通过 matrix下降路径最小和

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)(row + 1, col) 或者 (row + 1, col + 1)

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

在处理这种「路径类」的问题时,动态规划的状态表一般有两种常见形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置时,所有下降路径中的最小和。在考虑到达 [i, j] 的三种方式时,即从正上方 [i - 1, j]、左上方 [i - 1, j - 1] 和右上方 [i - 1, j + 1] 转移到 [i, j] 位置,我们需要选择三者中的最小值,再加上矩阵在 [i, j] 位置的值。因此,状态转移方程为:

dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));

在初始化过程中,我们添加一个辅助结点,将其值初始化为正无穷大,以保证后续填表时是正确的。同时,需要注意下标的映射关系。在本题中,我们添加了一行和两列,将第一行的值初始化为 0。填表的顺序是从上往下逐行填写。最后,我们不是返回 dp[m][n] 的值,而是返回 dp 表中最后一行的最小值,因为题目要求只要到达最后一行即可。

代码

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int m=matrix.size(),n=matrix[0].size();vector<vector<int>> dp(n+1,vector<int>(n+2,INT_MAX));for(int i=0;i<n+2;i++) dp[0][i]=0;for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));int ret=INT_MAX;for(int i=1;i<=n;i++)ret=min(ret,dp[n][i]);return ret;}
};

05.最小路径和

题目链接:https://leetcode.cn/problems/minimum-path-sum/

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步。

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

思路

在处理这种路径类问题时,我们通常选择两种状态表现形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置处的最小路径和。在分析 dp[i][j] 的情况时,我们考虑到达 [i, j] 位置之前的一小步有两种情况:一是从上方 [i - 1, j] 向下走一步,转移到 [i, j] 位置;二是从左方 [i, j - 1] 向右走一步,转移到 [i, j] 位置。由于我们要找的是最小路径,因此只需要这两种情况下的最小值,再加上 [i, j] 位置上本身的值即可。

也就是说,状态转移方程为:dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];

在初始化过程中,我们可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧需要注意两个点:一是辅助结点里面的值要保证后续填表是正确的;二是下标的映射关系。在本题中,添加了一行和一列,所有位置的值可以初始化为无穷大,然后让 dp[0][1] = dp[1][0] = 1 即可。

填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们返回 dp 表中最后一个位置的值,即 dp[m][n]

代码

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {int m=grid.size(),n=grid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[0][1]=dp[1][0]=0;for(int i=1;i<=m;i++)for(int j=1;j<=n;j++)dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];return dp[m][n];}
};

06.地下城游戏

题目链接:https://leetcode.cn/problems/dungeon-game/

恶魔们抓住了公主并将她关在了地下城 dungeon右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

**注意:**任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

示例 2:

输入:dungeon = [[0]]
输出:1 

提示:

  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • -1000 <= dungeon[i][j] <= 1000

思路

这道题可以通过动态规划求解,首先需要定义状态表现形式。如果我们定义为“从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数”,分析状态转移时可能会受到后续路径的影响。因此,更合适的状态表现形式是“从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数”。

综上,我们定义状态表达为:dp[i][j]表示:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

在状态转移方程中,我们考虑从 [i, j] 位置出发的两种选择: i. 向右走到终点,即从 [i, j] 到 [i, j + 1]; ii. 向下走到终点,即从 [i, j] 到 [i + 1, j]。

对于这两种选择,我们需要选择使得到达终点时的初始健康点数最小的路径。因此,状态转移方程为: dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];

然而,由于 dungeon[i][j] 可能是一个较大的正数,计算得到的dp[i][j]的值可能会小于等于 0。如果初始健康点数小于等于 0,马上死亡,因此我们需要处理这种情况,将 dp[i][j] 与 1 取最大值:dp[i][j]=max(1,dp[i][j]);

在初始化阶段,我们在最前面加上一个“辅助结点”来帮助初始化,需要注意辅助结点里面的值要保证后续填表是正确的,以及下标的映射关系。在本题中,我们在 dp 表的最后一行和最后一列分别添加一行和一列,将所有的值初始化为无穷大,然后让 dp[m][n - 1] = dp[m - 1][n] = 1

填表的顺序是从下往上逐行填写,每一行从右往左。最后,我们返回 dp[0][0] 的值。

代码

class Solution {
public:int calculateMinimumHP(vector<vector<int>>& dungeon) {int m=dungeon.size(),n=dungeon[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[m][n-1]=dp[m-1][n]=1;for(int i=m-1;i>=0;i--)for(int j=n-1;j>=0;j--){dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];dp[i][j]=max(1,dp[i][j]);}return dp[0][0];}
};

这篇关于算法沉淀——动态规划之路径问题(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750054

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解