算法沉淀——动态规划之路径问题(leetcode真题剖析)

2024-02-26 20:20

本文主要是介绍算法沉淀——动态规划之路径问题(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之路径问题

  • 01.不同路径
  • 02.不同路径 II
  • 03.珠宝的最高价值
  • 04.下降路径最小和
  • 05.最小路径和
  • 06.地下城游戏

01.不同路径

题目链接:https://leetcode.cn/problems/unique-paths/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路

这是一个典型的动态规划问题。以下是解题的一般步骤:

  1. 状态表示: 对于路径类问题,有两种状态表示方式,选择其中之一。这里选择从起始位置出发,到达 [i, j] 位置的方式:

    dp[i][j] 表示从起始位置到达 [i, j] 位置的路径数。

  2. 状态转移方程: 分析从 [i, j] 位置出发的一小步,有两种情况:

    • [i-1, j] 位置向下走一步,转移到 [i, j] 位置;
    • [i, j-1] 位置向右走一步,转移到 [i, j] 位置。

    因此,状态转移方程为:dp[i][j] = dp[i-1][j] + dp[i][j-1]

  3. 初始化:dp 数组前添加一行和一列,初始化 dp[0][1] 位置为 1

  4. 填表顺序: 从上往下,每一行从左往右填写。

  5. 返回值: 返回 dp[m][n] 的值,表示从起始位置到达终点位置的路径数。

代码

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m+1,vector<int>(n+1,0));dp[1][1]=1;for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(i==1&&j==1) continue;dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m][n];}
};

02.不同路径 II

题目链接:https://leetcode.cn/problems/unique-paths-ii/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1 

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

思路

根据上题分析,这题如果某个位置 [i - 1, j] 或者 [i, j - 1] 上存在障碍物,说明从这两个位置到达 [i, j] 的路径是被阻挡的,因此在计算 dp[i][j](表示从起点到达 [i, j] 的路径数)时,可以直接将 dp[i][j] 设为零,其余同上题。

代码

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m=obstacleGrid.size(),n=obstacleGrid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));dp[1][0]=1;for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)if(obstacleGrid[i-1][j-1]==0)dp[i][j]=dp[i-1][j]+dp[i][j-1];return dp[m][n];}
};

03.珠宝的最高价值

题目链接:https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/

现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]

示例 1:

输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝

提示:

  • 0 < frame.length <= 200
  • 0 < frame[0].length <= 200

思路

在处理这类问题时,动态规划的状态表可以采用两种主要形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示从起始位置到达 [i, j] 位置时的最大价值。在考虑到达 [i, j] 的两种方式时,即从上方 [i - 1, j] 或从左侧 [i, j - 1] 到达,我们需要选择其中最大价值的路径。因此,状态转移方程为:

dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];

在初始化过程中,可以添加一个辅助结点,并将所有值初始化为零。填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们应该返回 dp[m][n] 的值,表示在整个网格中的最大价值。

代码

class Solution {
public:int jewelleryValue(vector<vector<int>>& frame) {int m=frame.size(),n=frame[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];return dp[m][n];}
};

04.下降路径最小和

题目链接:https://leetcode.cn/problems/minimum-falling-path-sum/

给你一个 n x n方形 整数数组 matrix ,请你找出并返回通过 matrix下降路径最小和

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)(row + 1, col) 或者 (row + 1, col + 1)

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

在处理这种「路径类」的问题时,动态规划的状态表一般有两种常见形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置时,所有下降路径中的最小和。在考虑到达 [i, j] 的三种方式时,即从正上方 [i - 1, j]、左上方 [i - 1, j - 1] 和右上方 [i - 1, j + 1] 转移到 [i, j] 位置,我们需要选择三者中的最小值,再加上矩阵在 [i, j] 位置的值。因此,状态转移方程为:

dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));

在初始化过程中,我们添加一个辅助结点,将其值初始化为正无穷大,以保证后续填表时是正确的。同时,需要注意下标的映射关系。在本题中,我们添加了一行和两列,将第一行的值初始化为 0。填表的顺序是从上往下逐行填写。最后,我们不是返回 dp[m][n] 的值,而是返回 dp 表中最后一行的最小值,因为题目要求只要到达最后一行即可。

代码

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int m=matrix.size(),n=matrix[0].size();vector<vector<int>> dp(n+1,vector<int>(n+2,INT_MAX));for(int i=0;i<n+2;i++) dp[0][i]=0;for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));int ret=INT_MAX;for(int i=1;i<=n;i++)ret=min(ret,dp[n][i]);return ret;}
};

05.最小路径和

题目链接:https://leetcode.cn/problems/minimum-path-sum/

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步。

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

思路

在处理这种路径类问题时,我们通常选择两种状态表现形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置处的最小路径和。在分析 dp[i][j] 的情况时,我们考虑到达 [i, j] 位置之前的一小步有两种情况:一是从上方 [i - 1, j] 向下走一步,转移到 [i, j] 位置;二是从左方 [i, j - 1] 向右走一步,转移到 [i, j] 位置。由于我们要找的是最小路径,因此只需要这两种情况下的最小值,再加上 [i, j] 位置上本身的值即可。

也就是说,状态转移方程为:dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];

在初始化过程中,我们可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧需要注意两个点:一是辅助结点里面的值要保证后续填表是正确的;二是下标的映射关系。在本题中,添加了一行和一列,所有位置的值可以初始化为无穷大,然后让 dp[0][1] = dp[1][0] = 1 即可。

填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们返回 dp 表中最后一个位置的值,即 dp[m][n]

代码

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {int m=grid.size(),n=grid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[0][1]=dp[1][0]=0;for(int i=1;i<=m;i++)for(int j=1;j<=n;j++)dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];return dp[m][n];}
};

06.地下城游戏

题目链接:https://leetcode.cn/problems/dungeon-game/

恶魔们抓住了公主并将她关在了地下城 dungeon右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

**注意:**任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

示例 2:

输入:dungeon = [[0]]
输出:1 

提示:

  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • -1000 <= dungeon[i][j] <= 1000

思路

这道题可以通过动态规划求解,首先需要定义状态表现形式。如果我们定义为“从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数”,分析状态转移时可能会受到后续路径的影响。因此,更合适的状态表现形式是“从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数”。

综上,我们定义状态表达为:dp[i][j]表示:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

在状态转移方程中,我们考虑从 [i, j] 位置出发的两种选择: i. 向右走到终点,即从 [i, j] 到 [i, j + 1]; ii. 向下走到终点,即从 [i, j] 到 [i + 1, j]。

对于这两种选择,我们需要选择使得到达终点时的初始健康点数最小的路径。因此,状态转移方程为: dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];

然而,由于 dungeon[i][j] 可能是一个较大的正数,计算得到的dp[i][j]的值可能会小于等于 0。如果初始健康点数小于等于 0,马上死亡,因此我们需要处理这种情况,将 dp[i][j] 与 1 取最大值:dp[i][j]=max(1,dp[i][j]);

在初始化阶段,我们在最前面加上一个“辅助结点”来帮助初始化,需要注意辅助结点里面的值要保证后续填表是正确的,以及下标的映射关系。在本题中,我们在 dp 表的最后一行和最后一列分别添加一行和一列,将所有的值初始化为无穷大,然后让 dp[m][n - 1] = dp[m - 1][n] = 1

填表的顺序是从下往上逐行填写,每一行从右往左。最后,我们返回 dp[0][0] 的值。

代码

class Solution {
public:int calculateMinimumHP(vector<vector<int>>& dungeon) {int m=dungeon.size(),n=dungeon[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[m][n-1]=dp[m-1][n]=1;for(int i=m-1;i>=0;i--)for(int j=n-1;j>=0;j--){dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];dp[i][j]=max(1,dp[i][j]);}return dp[0][0];}
};

这篇关于算法沉淀——动态规划之路径问题(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750054

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明