pandas库入门 北理工嵩天老师python数据分析与展示 单元7随堂笔记

本文主要是介绍pandas库入门 北理工嵩天老师python数据分析与展示 单元7随堂笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pandas库入门 北理工嵩天老师python数据分析与展示 单元7随堂笔记

Pandas是Python第三方库,提供高性能易用数据类型和分析工具。

import pandas as pd

Pandas基于NumPy实现,常与Numpy和Matplotlib一同使用。

d = pd.Series(range(20))  
d  #第一列是索引,第二列是值
0      0
1      1
2      2
3      3
4      4
5      5
6      6
7      7
8      8
9      9
10    10
11    11
12    12
13    13
14    14
15    15
16    16
17    17
18    18
19    19
dtype: int64
d.cumsum() #计算前N项的累加和
0       0
1       1
2       3
3       6
4      10
5      15
6      21
7      28
8      36
9      45
10     55
11     66
12     78
13     91
14    105
15    120
16    136
17    153
18    171
19    190
dtype: int64

Pandas库的理解

两个数据类型:Series 、DataFrame
基于上述数据类型的各类操作:
基本操作,运算操作,特征类操作,关联类操作

       NumPy                              Pandas基础数据类型             基于np.array的扩展数据类型 Series 、DataFrame
关注数据的结构表达(即数据之间的维度表达)     关注数据的应用表达(如何提取、运算)维度:数据之间                       数据与索引间关系

Series类型

Series类型由一组数据及与之相关的数据索引组成
图四

a = pd.Series([9,8,7,6])  #自动索引
a
0    9
1    8
2    7
3    6
dtype: int64
b=pd.Series([9,8,7,6],index=['a','b','c','d']) #指定索引
b
a    9
b    8
c    7
d    6
dtype: int64

Series类型可以由如下类型创建

(1)标量值
s=pd.Series(25,index=['a','b','c'])  #通过标量值创建,不能省略index,index表达了Series类型的尺寸
s
a    25
b    25
c    25
dtype: int64
(2)python 字典
d=pd.Series({'a':9,'b':8,'c':7})# 用字典创建,键变为原来值的索引
d
a    9
b    8
c    7
dtype: int64
e=pd.Series({'a':9,'b':8,'c':7},index=['c','a','b','d'])#通过index指定Series结构
e
c    7.0
a    9.0
b    8.0
d    NaN
dtype: float64
(3)ndarray
import numpy as np
n=pd.Series(np.arange(5))
n
0    0
1    1
2    2
3    3
4    4
dtype: int32
m=pd.Series(np.arange(5),index=np.arange(9,4,-1))
m
9    0
8    1
7    2
6    3
5    4
dtype: int32
(4)其他函数

如range()

o=pd.Series(range(5),index=np.arange(9,4,-1))
o
9    0
8    1
7    2
6    3
5    4
dtype: int64

可以看到pandas与很多数据都具有兼容性

Series类型的基本操作

Series类型包括index和values两部分。
Series类型的操作类似ndarray类型。
Series类型的操作类似Python字典类型

b=pd.Series([9,8,7,6],['a','b','c','d'

这篇关于pandas库入门 北理工嵩天老师python数据分析与展示 单元7随堂笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749761

相关文章

Python实现文件下载、Cookie以及重定向的方法代码

《Python实现文件下载、Cookie以及重定向的方法代码》本文主要介绍了如何使用Python的requests模块进行网络请求操作,涵盖了从文件下载、Cookie处理到重定向与历史请求等多个方面,... 目录前言一、下载网络文件(一)基本步骤(二)分段下载大文件(三)常见问题二、requests模块处理

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3