【人脸朝向识别与分类预测】基于BP神经网络

2024-02-26 05:28

本文主要是介绍【人脸朝向识别与分类预测】基于BP神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课题名称:基于BP神经网络的人脸朝向识别分类

版本日期:2024-02-20

运行方式:直接运行BP0503.m文件

代码获取方式:私信博主或 QQ:491052175

模型描述:

采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每个人5幅图像,人脸的朝向分别是左方,左前方,前方,右前方,右方。通过观察不难法线,当人脸面朝不同方向时,眼睛在图像中的位置差别比较大.因此可以考虑将图片中描述眼睛位置的特征喜喜提取出来作为LVQ神经网络的输入,5个朝向分别用1,2,3,4,5表示,作为LVQ神经网络的输出。通过对训练集的图像进行训练,得到具有预测功能的网络,便可以对任意给出的人脸图像进行朝向判断和识别分类

算法流程:

1.人脸特征向量提取:如设计思路中所述,当人脸朝向不同时,眼睛在图像中的位置会有明显的差别。因此,只需要将描述人眼位置信息的特征向量提取出来即可。方法是将整幅图像划分成6行8列, 人眼的位置信息可以用第2行的8个子矩阵来描述(注意:针对不同大小的图像,划分的网格需稍作修改)边缘检测后8个子短阵中的值为“1”的像萦点个数与人脸朝向有直接关系, 只要分别统计出第2行的8个子短阵中的值为“1”的像素点个数即可。

2.训练集和测试集的产生:为了保证训练集数据的随机性,随机选取图像库中的30隔入脸图像提取出的特征向量作为训练集数据,剩余的20幅人脸图像提取出来的特征向盘作为测试集数据。

3.BP网络建立:利用BP神经网络调用函数建立BP神经网络

4.BP网络训练:利用训练数据进行网络训练,得到合适的网络权值和阈值

5.人脸识别测试:网络训练收敛后,便可以对测试集数据进行预测,即对测试集的图像进行人脸朝向识别.对于任意给出的图像,只需要将其特征向量提取出来,便可对其进行识别。

BP神经网络调用格式:

net=newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)

P:输入数据矩阵; T:输出数据矩阵; S:隐含层节点数

TF:节点传递函数; BTF:训练函数; BLF:网络学习函数

PF:性能分析函数; IPF:输入处理函数; OPF:输出处理函数; DDF:验证数据划分函数

改进方向:

待改进方向:

1.研究单隐含层的节点数,如何寻找到最佳隐含层节点数

2.将单隐含层替换为双隐含层,并且寻找到双隐含层的节点数

3.利用智能算法去优化BP神经网络的权值和阈值,比如GA算法,PSO算法,SA算法,GASA算法等等

特殊说明:

1. 过测试,对训练和测试数据进行归一化,反而降低了预测精度

2. 神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值

Matlab仿真结果:

基于BP神经网络的人脸朝向识别精确率:

基于BP神经网络的人脸朝向识别分类结果:

基于BP神经网络的人脸朝向识别分类预测误差:

这篇关于【人脸朝向识别与分类预测】基于BP神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747809

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下:

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04