3月21日提出辞职

2024-02-24 17:48
文章标签 21 辞职 提出

本文主要是介绍3月21日提出辞职,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在目前的公司干的不舒服,提出辞职了。

每天就是写一些无聊的文档,没完没了,我受不了了,我的下一步是开发GIS软件了。平台出来了,打算开公司卖钱呢,在这纯属浪费青春呀。

这篇关于3月21日提出辞职的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742863

相关文章

【LabVIEW学习篇 - 21】:DLL与API的调用

文章目录 DLL与API调用DLLAPIDLL的调用 DLL与API调用 LabVIEW虽然已经足够强大,但不同的语言在不同领域都有着自己的优势,为了强强联合,LabVIEW提供了强大的外部程序接口能力,包括DLL、CIN(C语言接口)、ActiveX、.NET、MATLAB等等。通过DLL可以使用户很方便地调用C、C++、C#、VB等编程语言写的程序以及windows自带的大

【JavaScript】LeetCode:21-25

文章目录 21 最大子数组和22 合并区间23 轮转数组24 除自身以外数组的乘积25 缺失的第一个正数 21 最大子数组和 贪心 / 动态规划贪心:连续和(count)< 0时,放弃当前起点的连续和,将下一个数作为新起点,这里提供使用贪心算法解决本题的代码。动态规划:dp[i]:以nums[i]为结尾的最长连续子序列(子数组)和。 dp[i] = max(dp[i - 1]

react笔记 8-21 约束性 表单

1、约束性组件和非约束性组件 非约束性组件<input type="text" name="" defaultValue={this.state.msg}></input>这里他的value是用户输入的值 并没有执行操作 只是获取到了msg的值 用户输入不会改变数据非约束性组件需要使用defaultValue获取数据 否则会报错约束性组件<input type="text

超越IP-Adapter!阿里提出UniPortrait,可通过文本定制生成高保真的单人或多人图像。

阿里提出UniPortrait,能根据用户提供的文本描述,快速生成既忠实于原图又能灵活调整的个性化人像,用户甚至可以通过简单的句子来描述多个不同的人物,而不需要一一指定每个人的位置。这种设计大大简化了用户的操作,提升了个性化生成的效率和效果。 UniPortrait以统一的方式定制单 ID 和多 ID 图像,提供高保真身份保存、广泛的面部可编辑性、自由格式的文本描述,并且无需预先确定的布局。

生成式AI让你提出高智商问题,让你看起来超聪明

你可以使用生成式AI来提出极其聪明的问题,这些问题对于各种目的和意图都非常有用。 你想表现得聪明绝顶吗? 我相信大多数人都想。 如果你不熟悉“聪明绝顶”这个词,它在1997年的电影《心灵捕手》中流行起来,当时本·阿弗莱克的角色说他的朋友聪明绝顶,这是一种波士顿人常用的表达,表示某人非常聪明。这个地方性俚语从那时起就被广泛使用,并且非常朗朗上口。 让一个人看起来特别聪明的方式之一就是通过他们

内存管理篇-21 虚拟内存管理:线性映射区

1.线性映射区的定义         这部分讲线性映射区的内容。一般老的嵌入式平台,它内存很小只有几百兆,都会直接把整个物理内存映射到线性映射区了,只有当物理内存大于1GB以上,线性映射区无法cover的时候就把剩下的放到高端内存。所以这个区域是最简单的。         线性映射区一般是指内核空间的某个部分,直接映射到低端内存的区域。并且他们之间是线性映射的。         PAGE_O

自动驾驶真正踏出迈向“用户”的第一步:IROS24新SOTA提出个性化的实例迁移模仿学习

导读: 本文针对自动驾驶规划任务,提出了一种基于实例的迁移模仿学习方法,通过预先训练的微调框架从专家域迁移专业知识,以解决用户域数据稀缺问题。实验结果显示,该方法能有效捕捉用户驾驶风格并实现具有竞争力的规划性能,但仍需开发合适的用户风格测量方法。©️【深蓝AI】编译 1. 摘要 个性化运动规划在自动驾驶领域中具有重要意义,可以满足个人用户的独特需求。然而,以往的工作在同时解决两个关键问题

leetcode解题思路分析(三)15-21题

三数求和 最简单的做法就是三重循环判断: int length=nums.length;for(int i=0;i<length;i++){for(int j=i+1;j<length;j++){for(int k=j+1;k<length;k++){if(nums(i)+nums[j]+nums[k]==0){...}}} } 在此基础上,对第三次查找其实可以做优化:

谷歌提出新型半监督方法 MixMatch

事实证明,半监督学习可以很好地利用无标注数据,从而减轻对大型标注数据集的依赖。而谷歌的一项研究将当前主流的半监督学习方法统一起来,得到了一种新算法 MixMatch。该算法可以为数据增强得到的无标注样本估计(guess)低熵标签,并利用 MixUp 来混合标注和无标注数据。实验表明,MixMatch 在许多数据集和标注数据上获得了 STOA 结果,展现出巨大优势。例如,在具有 250

第 21 章 DOM 操作表格及样式

第 21 章 DOM 操作表格及样式 1.操作表格 2.操作样式 DOM 在操作生成 HTML 上,还是比较简明的。不过,由于浏览器总是存在兼容和陷阱,导致最终的操作就不是那么简单方便了。本章主要了解一下 DOM 操作表格和样式的一些知识。 一.操作表格 标签是 HTML 中结构最为复杂的一个,我们可以通过 DOM 来创建生成它,或者 HTML DOM 来操作它。(PS:HTML DOM