【MATLAB】CEEMD_ MFE_SVM_LSTM 神经网络时序预测算法

2024-02-24 11:44

本文主要是介绍【MATLAB】CEEMD_ MFE_SVM_LSTM 神经网络时序预测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

CEEMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了多种先进技术的复杂预测方法,旨在提高时序预测的准确性和稳定性。下面是对该算法的详细介绍:

  1. CEEMD(完全扩展经验模态分解):CEEMD是EMD(经验模态分解)的一种变体,它通过在分解过程中引入自适应噪声(AN)来提高分解的准确性和稳定性。与EMD相比,CEEMD能够更好地处理模态混叠问题,并将原始时间序列分解为一系列固有模式函数(IMF)和一个残差序列。这些IMF和残差序列代表了原始信号在不同频率和时间尺度上的变化。

  2. MFE(多尺度特征提取):在CEEMD分解之后,通过MFE可以从每个IMF中提取出多尺度的特征。这些特征可能包括信号的统计特性、频域特性、时域特性等。多尺度特征的提取有助于更全面地描述原始信号的特性,并为后续的预测模型提供更丰富的信息。

  3. SVM(支持向量机):SVM是一种监督学习模型,通常用于分类和回归分析。在时序预测中,SVM可以利用历史数据和提取的多尺度特征学习到一个模型。这个模型可以捕捉信号中的非线性关系,并用于预测未来的数据点。SVM的优势在于其对于高维数据的处理能力,以及对于非线性关系的良好捕捉能力。

  4. LSTM(长短期记忆神经网络):LSTM是一种特殊的循环神经网络(RNN),特别适用于处理长时间序列相关的问题。LSTM的内部结构由遗忘门、输入门、输出门和存储单元组成,通过这些门控单元的相互作用,LSTM能够学习到时间序列中的长期依赖关系。在CEEMD_MFE_SVM_LSTM算法中,LSTM可以用于进一步优化SVM的预测结果。通过将每个IMF作为LSTM的输入,并利用LSTM模型对每个IMF进行预测,可以得到更精确的预测结果。

综上所述,CEEMD_MFE_SVM_LSTM神经网络时序预测算法通过结合CEEMD、MFE、SVM和LSTM等多种技术的优势,旨在提高时序预测的准确性和稳定性。首先,CEEMD利用自适应噪声将原始时间序列分解为多个IMF和一个残差序列;然后,通过MFE从每个IMF中提取多尺度的特征;接着,利用SVM学习这些特征并得到一个初步的预测模型;最后,通过LSTM进一步优化这个预测模型,得到最终的预测结果。这种组合方法能够充分利用各种技术的优点,提高时序预测的准确性和稳定性。在实际应用中,CEEMD_MFE_SVM_LSTM算法可以应用于各种领域,如金融市场预测、气象预报、能源消耗预测等。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

这篇关于【MATLAB】CEEMD_ MFE_SVM_LSTM 神经网络时序预测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/741989

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int