AI学会理解物理力学,机器像人更进一步 | 清华学神在MIT新研究

本文主要是介绍AI学会理解物理力学,机器像人更进一步 | 清华学神在MIT新研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问耕 发自 凹非寺
量子位 出品 | 公众号 QbitAI

机器能自行理解我们这个物理世界的基本规则么?答案是能。

多年以来,麻省理工学院(MIT)的研究人员一直在寻求解释和复制人类智能,而他们最近的研究成果,是如何让AI智能体拥有认知世界的基本能力。

即:学会分辨不同的对象,以及推断它们如何受到物理作用力的影响。

这包括几个方面。首先是看到图片后,能脑补其中物体的三维形状;其次是判断物体的物理特性,例如质量和摩擦力等;然后是推断随着时间推移,这些它们会如何被物理作用力改变,比方会发生何种位移。

在这个方向上,MIT博士生吴佳俊和团队一起发表了四篇研究论文,这四篇论文入选了刚刚结束的NIPS,而且有两篇被选为spotlight。

其中三篇论文谈及如何从视觉和听觉数据中,推断出物体的物理结构。另外一篇,则是预测这些物体会会如何发生变化。

“总而言之,我们已经能够让机器像人类一样,掌握越来越多对物理世界的基本理解”,吴佳俊的导师Josh Tenenbaum教授表示。

脑补

首先要解决的问题是,如何正确认知这个世界。

挑战在于,如何构建一个神经网络模型,能够基于给定的二维图片,脑补出隐藏在视线之外的物体形状,最终还原构建出一个三维图像。

这需要模型能看透物体间的相互遮挡,滤除混杂期间的视觉纹理、反射和阴影,推断看不见的地方究竟是什么形状等等。

显然这是一个复杂的问题。参与这项研究的不止MIT学者,还有来自DeepMind、上海科技大学、上海交通大学的各路高手。

这些研究基于MIT神经科学家大卫·马尔(David Marr)的理论。这位英年早逝的科学家认为,在解释一个视觉场景时,大脑首先从观察角度建立对象的2.5D草图,然在在此基础上,大脑继续推断出物体完整的三维形状。

这不是一件易事。

吴佳俊和同事们为了训练神经网络,会首先建立一个三维场景模型,然后再生成一张二维图片。整个过程就像拍摄动画电影似的。一旦有了数据,就能让AI开始自学如何基于二维图片,脑补出三维场景。

还有更有意思的挑战。

比方,听声脑补。在另一篇论文中,他们训练了一个系统,通过物体被丢弃时发出的声音,推断物体的形状、材质以及跌落的高度。

物理

神经网络已经学会如何脑补一个三维世界,现在,是时候让AI学习如何像人类一样,掌握对真实世界物理作用力的直观理解了。

研究人员一共交待了两项任务。

其一,是估计台球的运行速度,并据此预测台球(们)发生撞击后,后续的运动情况。其二,是分析堆叠的方块静态图,并据此判断这堆方块是否会掉落,以及会落在何处?

吴佳俊为此开发了一种称为场景XML的表示语言,可以定量描述视觉场景中物体的相对位置。神经网络首先学习使用这个语言输入数据,然后把这个描述提供给一个物理引擎,这个引擎负责基于物理作用力进行建模。

物理引擎最终完成台球和方块运动的预测之后,信息被发送给图形引擎,最终形成一张预测图片。这张图片会与真实场景的物理作用结果进行比较。

在测试中,MIT的研究超过了前人的成果。

“他们使用了物理工具来训练生成模型”,南加州大学计算机科学助理教授Joseph Lim表示:“这个简单而优雅的想法与最先进的深度学习技术结合,在与解释物理世界相关的多项任务中展现了非常棒的结果”。

上述内容主要源自MIT News,原文地址:

http://news.mit.edu/2017/computer-systems-predict-objects-responses-physical-forces-1214

吴佳俊

上面提及的四篇论文中,吴佳俊都有参与,其中两篇是作为第一作者。

前面已经提到,吴佳俊现在是MIT的博士生。他的导师是Bill Freeman教授Josh Tenenbaum教授。吴佳俊的研究方向主要为计算机视觉、机器学习和计算认知科学。

吴佳俊本科毕业于清华大学交叉信息研究院,导师为屠卓文教授。

2010年9月,18岁的吴佳俊通过全国信息学奥林匹克竞赛从上海华东师范大学第二附属中学保送至清华大学。

就读清华期间,吴佳俊一度成为话题人物。当时吴佳俊正参选2013年清华大学本科生特等奖学金,他的一份个人履历引起了广泛的关注。其中最受关注的一项成就是:顶级会议CVPR 2014审稿人。

此后,吴佳俊时常被被外界冠以超强履历、新一代学神等形容词。

相关论文

最后,如果你对上述提及的四篇论文感兴趣,可以前方吴佳俊的个人主页查看,地址:jiajunwu.com。

另外,在量子位微信公众号(ID:QbitAI)后台回复:“吴佳俊”三个字,也能获得这四篇论文的下载地址。

活动报名

加入社群

量子位AI社群12群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot4入群;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进群请加小助手微信号qbitbot4,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态


这篇关于AI学会理解物理力学,机器像人更进一步 | 清华学神在MIT新研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740189

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首