AI学会理解物理力学,机器像人更进一步 | 清华学神在MIT新研究

本文主要是介绍AI学会理解物理力学,机器像人更进一步 | 清华学神在MIT新研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问耕 发自 凹非寺
量子位 出品 | 公众号 QbitAI

机器能自行理解我们这个物理世界的基本规则么?答案是能。

多年以来,麻省理工学院(MIT)的研究人员一直在寻求解释和复制人类智能,而他们最近的研究成果,是如何让AI智能体拥有认知世界的基本能力。

即:学会分辨不同的对象,以及推断它们如何受到物理作用力的影响。

这包括几个方面。首先是看到图片后,能脑补其中物体的三维形状;其次是判断物体的物理特性,例如质量和摩擦力等;然后是推断随着时间推移,这些它们会如何被物理作用力改变,比方会发生何种位移。

在这个方向上,MIT博士生吴佳俊和团队一起发表了四篇研究论文,这四篇论文入选了刚刚结束的NIPS,而且有两篇被选为spotlight。

其中三篇论文谈及如何从视觉和听觉数据中,推断出物体的物理结构。另外一篇,则是预测这些物体会会如何发生变化。

“总而言之,我们已经能够让机器像人类一样,掌握越来越多对物理世界的基本理解”,吴佳俊的导师Josh Tenenbaum教授表示。

脑补

首先要解决的问题是,如何正确认知这个世界。

挑战在于,如何构建一个神经网络模型,能够基于给定的二维图片,脑补出隐藏在视线之外的物体形状,最终还原构建出一个三维图像。

这需要模型能看透物体间的相互遮挡,滤除混杂期间的视觉纹理、反射和阴影,推断看不见的地方究竟是什么形状等等。

显然这是一个复杂的问题。参与这项研究的不止MIT学者,还有来自DeepMind、上海科技大学、上海交通大学的各路高手。

这些研究基于MIT神经科学家大卫·马尔(David Marr)的理论。这位英年早逝的科学家认为,在解释一个视觉场景时,大脑首先从观察角度建立对象的2.5D草图,然在在此基础上,大脑继续推断出物体完整的三维形状。

这不是一件易事。

吴佳俊和同事们为了训练神经网络,会首先建立一个三维场景模型,然后再生成一张二维图片。整个过程就像拍摄动画电影似的。一旦有了数据,就能让AI开始自学如何基于二维图片,脑补出三维场景。

还有更有意思的挑战。

比方,听声脑补。在另一篇论文中,他们训练了一个系统,通过物体被丢弃时发出的声音,推断物体的形状、材质以及跌落的高度。

物理

神经网络已经学会如何脑补一个三维世界,现在,是时候让AI学习如何像人类一样,掌握对真实世界物理作用力的直观理解了。

研究人员一共交待了两项任务。

其一,是估计台球的运行速度,并据此预测台球(们)发生撞击后,后续的运动情况。其二,是分析堆叠的方块静态图,并据此判断这堆方块是否会掉落,以及会落在何处?

吴佳俊为此开发了一种称为场景XML的表示语言,可以定量描述视觉场景中物体的相对位置。神经网络首先学习使用这个语言输入数据,然后把这个描述提供给一个物理引擎,这个引擎负责基于物理作用力进行建模。

物理引擎最终完成台球和方块运动的预测之后,信息被发送给图形引擎,最终形成一张预测图片。这张图片会与真实场景的物理作用结果进行比较。

在测试中,MIT的研究超过了前人的成果。

“他们使用了物理工具来训练生成模型”,南加州大学计算机科学助理教授Joseph Lim表示:“这个简单而优雅的想法与最先进的深度学习技术结合,在与解释物理世界相关的多项任务中展现了非常棒的结果”。

上述内容主要源自MIT News,原文地址:

http://news.mit.edu/2017/computer-systems-predict-objects-responses-physical-forces-1214

吴佳俊

上面提及的四篇论文中,吴佳俊都有参与,其中两篇是作为第一作者。

前面已经提到,吴佳俊现在是MIT的博士生。他的导师是Bill Freeman教授Josh Tenenbaum教授。吴佳俊的研究方向主要为计算机视觉、机器学习和计算认知科学。

吴佳俊本科毕业于清华大学交叉信息研究院,导师为屠卓文教授。

2010年9月,18岁的吴佳俊通过全国信息学奥林匹克竞赛从上海华东师范大学第二附属中学保送至清华大学。

就读清华期间,吴佳俊一度成为话题人物。当时吴佳俊正参选2013年清华大学本科生特等奖学金,他的一份个人履历引起了广泛的关注。其中最受关注的一项成就是:顶级会议CVPR 2014审稿人。

此后,吴佳俊时常被被外界冠以超强履历、新一代学神等形容词。

相关论文

最后,如果你对上述提及的四篇论文感兴趣,可以前方吴佳俊的个人主页查看,地址:jiajunwu.com。

另外,在量子位微信公众号(ID:QbitAI)后台回复:“吴佳俊”三个字,也能获得这四篇论文的下载地址。

活动报名

加入社群

量子位AI社群12群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot4入群;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进群请加小助手微信号qbitbot4,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态


这篇关于AI学会理解物理力学,机器像人更进一步 | 清华学神在MIT新研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740189

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/