基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

2024-02-23 06:36

本文主要是介绍基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

写上篇文章时测试过程比较乱,写的时候有些地方有点失误,所以重新写了这篇
本文内容均在RGB-D环境下进行程序测试

本文涉及到的动态特征点剔除速度均是以https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_xyz数据进行实验

方法1:segment坐标点集合逐一排查剔除

利用YOLOv8的segment获取动态对象(这里指人person)所在区域的坐标点集合segpoints,之后将提取的特征点的坐标逐一与segpoints中的所有坐标作判断,将出现在segpoints中的特征点的坐标改为(-1,-1),然后在畸变校正时会将坐标为(-1,-1)的异常坐标剔除。但是segpoints中的数据量太大,完成一次剔除任务花费的时间太长(基本在40~50ms,这个与动态区域的大小即segpoints中的点数是有关的)。另外,特征点坐标为浮点型,而segpoints中的坐标为整型,其实没必要非用 = 判断,可以判断特征点在获取的动态目标区域坐标的周围1(可以调整,我最终在程序中使用半径为2)个像素就可以了,这已经很接近=了。

下面是部分代码:

std::vector<cv::Point> segpoints;
for (auto& obj:objs_seg) {int idx = obj.label;if (idx == 0){cv::Mat locations;cv::findNonZero(obj.boxMask == 255, locations);for (int i = 0; i < locations.rows; ++i) {cv::Point segpoint = locations.at<cv::Point>(i);segpoint.x += obj.rect.x;segpoint.y += obj.rect.y;segpoints.push_back(segpoint);}}
}
// 动态特征点的判断
for (int k=0; k<mvKeys.size(); ++k){const cv::KeyPoint& kp = mvKeys[k];bool isDynamic = false;for (int kk = 0; kk < segpoints.size(); ++kk) {if (kp.pt.x > segpoints[kk].x-3 && kp.pt.x < segpoints[kk].x+3 && kp.pt.y > segpoints[kk].y-3 && kp.pt.y < segpoints[kk].y+3) {mvKeys[k] = cv::KeyPoint(-1,-1,-1);isDynamic = true;break;}}vbInDynamic_mvKeys.push_back(isDynamic);
}

方法2:利用目标检测框

利用YOLOv8进行目标检测,将检测到的目标分为两类:动态对象和静态对象。
这里仅将person设为动态对象。获取动态对象及静态对象的检测框后判断提取的特征点是否在动态对象检测框内以及是否在静态对象检测框内。

1.特征点在动态对象检测框内而不在静态对象检测框内,则满足剔除条件,将其剔除;
2.其余情况皆不满足剔除条件。

采用这种方法速度提升至0.02~0.03ms.

struct DyObject {cv::Rect_<float> rect;int              id = 0;
};std::vector<ORB_SLAM2::DyObject> detect_results;
for (auto& obj:objs_det)
{int class_id = 0;// id为0代表其为静态对象int class_label = obj.label;if (class_label == 0){// 如果是人person则将其id改为1即动态对象class_id = 1;}cv::Rect_<float> bbox;bbox = obj.rect;ORB_SLAM2::DyObject detect_result;detect_result.rect = bbox;detect_result.id = class_id;detect_results.push_back(detect_result);
}
// 判断特征点是否在动态检测框内
bool Frame::isDynamic(const int& i,std::vector<DyObject>& detect_results){const cv::KeyPoint& kp = mvKeys[i];float kp_u  = kp.pt.x;float kp_v = kp.pt.y;bool is_dynamic = false;for(auto& result:detect_results){int idx = result.id;if (idx == 1){double left = result.rect.x;double top = result.rect.y;double right = result.rect.x + result.rect.width;double bottom = result.rect.y + result.rect.height;if(kp_u>left-2 && kp_u<right+2 && kp_v>top-2 && kp_v<bottom-2){// 如果特征点在动态目标检测框内is_dynamic = true;}}}return is_dynamic;
}// 判断特征点是否在静态检测框内
bool Frame::isStatic(const int& i,std::vector<DyObject>& detect_results){const cv::KeyPoint& kp = mvKeys[i];float kp_u  = kp.pt.x;float kp_v = kp.pt.y;bool is_static = false;for(auto& result:detect_results){int idx = result.id;if (idx == 0){double left = result.rect.x;double top = result.rect.y;double right = result.rect.x + result.rect.width;double bottom = result.rect.y + result.rect.height;if(kp_u>left && kp_u<right && kp_v>top && kp_v<bottom){is_static = true;}}}return is_static;}

优化(方法3):目标检测框+实例分割

针对方法1关于速度即处理数据量太大的问题,其实可以将方法1与方法2结合运用,先利用方法2进行判断特征点是否在动态目标的检测框内(不过不需要判断是否在静态目标的检测框内了,方法2中如果在静态目标检测框内就保留该点而不会被剔除,这里舍弃此步骤也是宁缺毋滥的原则),如果判断结果为真的话,则利用方法1将特征点与实例分割的Mask坐标进行判断即可,这样就可以节省很多时间了。

// 动态目标特征点的判断
//先定义一种目标检测的结果结构
struct DyObject {cv::Rect_<float> rect;std::vector<cv::Point> pts;int              id = 0;
};for (auto& obj:objs_seg) {int idx = obj.label;std::vector<cv::Point> segpoints;cv::Mat locations;cv::findNonZero(obj.boxMask == 255, locations);for (int i = 0; i < locations.rows; ++i) {cv::Point segpoint = locations.at<cv::Point>(i);cv::Rect_<float> rect;segpoint.x += obj.rect.x;segpoint.y += obj.rect.y;segpoints.push_back(segpoint);}ORB_SLAM2::DyObject detect_result;detect_result.rect = obj.rect;detect_result.pts = segpoints;detect_result.id = idx;detect_results.push_back(detect_result);
}

速度控制在了25ms以内。

方案1可以被舍弃了,对于方法2与方法3,测试一下二者在精度上的差异,因为从上面的工作中可以看出方法2的速度很快,如果精度差异很小的话为了SLAM实时性还是采用方法2比较好。
TUM提供了SLAM轨迹精度评估工具:
evaluate_ate.py、evaluate_rpe.py、associate.py
具体内容:https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools
将上面三个代码下载后就可以对TUM数据集的结果轨迹进行精度评估了。

首先是方法2仅利用目标检测框的一个特征点剔除情况:紫色的点就是之后会被剔除的点。

然后是方法3的特征点剔除情况:

上面两张图片的对比可以看出方法2会将一些有用的特征点也标记为动态特征点,而方法3会更精确。关于图片中红色圆圈,是我做的纹理分析,目前还没完全做好所以就先不讲了。

我对ORB-SLAM2与我基于ORB-SLAM2andYOLOv8(方法2与方法3)在数据集rgbd_dataset_freiburg3_walking_xyz的结果轨迹进行了精度评估,结果如下:

精度评估
TUM-freiburg3_walking_xyzORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.5555830.0225210.018761
ATE0.4742760.0173880.014755

方法3利用目标检测框+实例分割的方法的精度是最优的。

下面再测测https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_rpy

精度评估
TUM-freiburg3_walking_rpyORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.9686050.0358530.035431
ATE0.7880890.0299420.028222

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_sitting_halfsphere

精度评估
TUM-freiburg3_walking_halfphereORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.3579840.0452500.029718
ATE0.2940750.0363010.023612

从以上从三个数据集获得的三组精度评估结果来看,方法3的精度最高,25ms的动态特征点处理速度也是可接受的(我的电脑算是比较旧了)。

这篇关于基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737798

相关文章

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时