深度学习之图像分割(三)—— 空洞卷积/膨胀卷积(霹雳吧啦wz)

2024-02-22 07:20

本文主要是介绍深度学习之图像分割(三)—— 空洞卷积/膨胀卷积(霹雳吧啦wz),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 引入空洞卷积
      • 1.空洞卷积的优缺点:
        • 1.空洞卷积的优点
        • 2.空洞卷积的缺点
      • 2.Gridding effect:网格影响
      • 3.解决办法:Hybrid Dilated Convolution(HDC)
      • 4.在连续使用多个膨胀卷积时,该如何设置膨胀系数?
        • 方法1.使用公式验证膨胀系数的大小
        • 方法2.将膨胀系数设置成锯齿结构
        • 方法3.膨胀系数的公约数不能大于1
      • 5.对比实验
      • 6.反卷积计算公式

引入空洞卷积

1.空洞卷积的优缺点:

1.空洞卷积的优点

1.增大感受野:传统的下采样虽可增加感受野,但会降低空间分辨率。而使用空洞卷积能够在扩大感受野的同时,保证分辨率。这十分适用于检测、分割任务中,感受野的增大可检测、分割大的目标,高分辨率则可精确定位目标。
2.保持原输入特征图W、H(一般通过padding)
3.捕获多尺度上下文信息:空洞卷积中参数 dilation rate 表明在卷积核中填充 (dilation rate-1) 个 0。设置不同 dilation rate 给网络带来不同的感受野,即获取了多尺度信息。
在这里插入图片描述

2.空洞卷积的缺点

1.局部信息丢失:由于空洞卷积的计算方式类似于棋盘格式,某一层得到的卷积结果,来自上一层的独立的集合,没有相互依赖,因此该层的卷积结果之间没有相关性,即局部信息丢失;
2.远距离获取的信息没有相关性:由于空洞卷积稀疏的采样输入信号,使得远距离卷积得到的信息之间没有相关性。

2.Gridding effect:网格影响

Gridding effect:没有用到范围内的所有像素值,而只使用到了一部分。非零元素中间有0元素(没有使用到的元素),因此一定会失去一部分信息。
在这里插入图片描述
在这里插入图片描述

3.解决办法:Hybrid Dilated Convolution(HDC)

连续使用膨胀卷积时,膨胀系数不同。感受野13*13
在这里插入图片描述
对比普通卷积,可以看到感受野明显减小了很多,感受野7*7
在这里插入图片描述

4.在连续使用多个膨胀卷积时,该如何设置膨胀系数?

方法1.使用公式验证膨胀系数的大小

在这里插入图片描述
Mi就等于第i层两个非零元素之间的距离,ri就等于第i层的膨胀系数。我们的目标是M2≤K。根据三个膨胀系数,计算值是否合适。

方法2.将膨胀系数设置成锯齿结构

在这里插入图片描述

方法3.膨胀系数的公约数不能大于1

在这里插入图片描述

5.对比实验

第二行是没有使用HDC方法,第三行是使用了HDC
在这里插入图片描述

6.反卷积计算公式

假设输入特征图的尺寸为 H i n × W i n × C i n H_{in} \times W_{in} \times C_{in} Hin×Win×Cin,输出特征图的尺寸为 H o u t × W o u t × C o u t H_{out} \times W_{out} \times C_{out} Hout×Wout×Cout,上采样倍数为 k k k,膨胀卷积核大小为 k h × k w k_h \times k_w kh×kw,填充大小为 p h × p w p_h \times p_w ph×pw,跨度为 s h × s w s_h \times s_w sh×sw,则膨胀卷积的系数计算如下:

计算输出特征图的尺寸:
H o u t = ( H i n − 1 ) × s h + k h − 2 × p h H_{out} = (H_{in} - 1) \times s_h + k_h - 2 \times p_h Hout=(Hin1)×sh+kh2×ph

W o u t = ( W i n − 1 ) × s w + k w − 2 × p w W_{out} = (W_{in} - 1) \times s_w + k_w - 2 \times p_w Wout=(Win1)×sw+kw2×pw

这篇关于深度学习之图像分割(三)—— 空洞卷积/膨胀卷积(霹雳吧啦wz)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734502

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操