使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出

本文主要是介绍使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出

本文章的第三弹,由于LangChain本文不支持直接使用通义千问API进行多轮对话和流式输出,但是自建知识库呢,还需要LangChain,因此我尝试了一下,自建知识库用LangChain,然后使用自己编写的提示词语句来时间查询。最后也能模拟出一个一样的效果。

调用阿里通义千问大语言模型API-小白新手教程-python
LangChain结合通义千问的自建知识库

文章目录

  • 使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出
    • 自建知识库文档
    • 使用LangChain构建本地知识库
    • 多轮对话和流式输出实现代码
  • 总结

自建知识库文档

还是上一篇文章的一小段话

CSDN中浩浩的科研笔记博客的作者是啊浩
博客的地址为 www.chen-hao.blog.csdn.net
其原力等级为5级,在其学习评价中,其技术能力超过了99.6%的同码龄作者,且超过了97.9%的研究生用户。
该博客中包含了,单片机,深度学习,数学建模,优化方法等,相关的博客信息,其中访问量最多的博客是《Arduino 让小车走实现的秘密 增量式PID 直流减速编码电机》。
其个人能力主要分布在Python,和Pytorch方面,其中python相对最为擅长,希望可以早日成为博客专家。

使用LangChain构建本地知识库

在这个代码中,读取切分,使用embedding模型生成词向量直接用一个代码实现,代码如下。

from langchain_community.vectorstores import Chroma
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import time
import numpy as nptime_list = []t = time.time()
# 导入文本
loader = UnstructuredFileLoader("test.txt")
data = loader.load()# 文本切分
text_splitter = RecursiveCharacterTextSplitter(chunk_size=20, chunk_overlap=0)
split_docs = text_splitter.split_documents(data)
print(split_docs)
model_name = r"Model\bce-embedding-vase_v1"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs
)# 初始化加载器 构建本地知识向量库
db = Chroma.from_documents(split_docs, embeddings,persist_directory="./chroma/news_test")
# 持久化
db.persist()# 打印时间##
time_list.append(time.time()-t)
print(time.time()-t)

运行结果如下,这个小段文字的文本使用CPU构建本文知识向量库的话的时间大概在8秒
在这里插入图片描述
然后这里的chunk_size不要选择太长,2-3句话的大小就可以,这属于适应文档情况的超参数
如果chunk_size设置的过大,可能会导致只生成了2条知识向量库,然后最后再设置查找多少个样本总结的时候,就会出现查找不到多少条的警告,还会导致判断是否无关的提示词逻辑无效,会输出一大堆无关的结果

多轮对话和流式输出实现代码

这里就是最关键的部分,我先给出代码,然后再说一下里面的内容,代码结合了调整知识向量库加载器和通义前问官方的流式输出API的代码。

from dashscope import Generation
from dashscope.api_entities.dashscope_response import Role
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddingsmessages = []model_name = r"Model\bce-embedding-vase_v1"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs
)
db = Chroma(persist_directory="./chroma/news_test", embedding_function=embeddings)while True:message = input('user:')similarDocs = db.similarity_search(message, k=5)summary_prompt = "".join([doc.page_content for doc in similarDocs])send_message = f"下面的信息({summary_prompt})是否有这个问题({message})有关,如果你觉得无关请告诉我无法根据提供的上下文回答'{message}'这个问题,简要回答即可,否则请根据{summary_prompt}{message}的问题进行回答"messages.append({'role': Role.USER, 'content': send_message})whole_message = ''# 切换模型responses = Generation.call(Generation.Models.qwen_max, messages=messages, result_format='message', stream=True, incremental_output=True)# responses = Generation.call(Generation.Models.qwen_turbo, messages=messages, result_format='message', stream=True, incremental_output=True)print('system:',end='')for response in responses:whole_message += response.output.choices[0]['message']['content']print(response.output.choices[0]['message']['content'], end='')print()messages.append({'role': 'assistant', 'content': whole_message})

提问你好
在这里插入图片描述
提问浩浩的科研笔记的作者是谁。
在这里插入图片描述

总结

后续除了根据文档调chunk_sizek或者提示词之外,想企业应用的话应该需要一些知识图谱相关的逻辑。这个系列目前就到这里,后续有新的发展我会再说。

这篇关于使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734054

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W