学习通信原理之——傅里叶正变换/傅里叶逆变换公式的证明

2024-02-21 16:52

本文主要是介绍学习通信原理之——傅里叶正变换/傅里叶逆变换公式的证明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 频谱密度函数
  • 傅里叶正变换
  • 傅里叶逆变换
  • 总结
    • 傅里叶正变换
    • 傅里叶逆变换


频谱密度函数

F ( ω ) = lim ⁡ T → ∞ F n 1 / T = lim ⁡ T → ∞ F n ⋅ T = lim ⁡ w → 0 F n ⋅ 2 π w F\left( \omega \right) =\lim_{T\rightarrow \infty} \frac{F_n}{1/T}=\lim_{T\rightarrow \infty} F_n \cdot T= \lim_{w\rightarrow 0} \frac{F_n\cdot 2\pi}{w} F(ω)=Tlim1/TFn=TlimFnT=w0limwFn2π
在这里 F n F_n Fn(指数型傅里叶级数的系数)是趋于无穷小的, T T T是趋于无穷大的,所以这两者相乘是一个常数。

傅里叶正变换

由上文的公式
F ( ω ) = lim ⁡ T → ∞ F n 1 / T = lim ⁡ T → ∞ F n ⋅ T = lim ⁡ w → 0 F n ⋅ 2 π w F\left( \omega \right) =\lim_{T\rightarrow \infty} \frac{F_n}{1/T}=\lim_{T\rightarrow \infty} F_n \cdot T= \lim_{w\rightarrow 0} \frac{F_n\cdot 2\pi}{w} F(ω)=Tlim1/TFn=TlimFnT=w0limwFn2π
以及
F n = 1 T ∫ − T 2 T 2 f ( t ) e − j n ω t d t F_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}{f\left( t \right) e^{-jn\omega t}dt} Fn=T12T2Tf(t)ejnωtdt
F n F_n Fn代入 F ( j ω ) = lim ⁡ T → ∞ F n ⋅ T F\left( j\omega \right) =\lim_{T\rightarrow \infty} F_n \cdot T F()=limTFnT

F ( ω ) = ∫ − T 2 T 2 f ( t ) e − j n ω t d t F\left( \omega \right) =\int_{-\frac{T}{2}}^{\frac{T}{2}}{f\left( t \right) e^{-jn\omega t}dt} F(ω)=2T2Tf(t)ejnωtdt
因为傅里叶变换的情况是 T T T趋于无穷, ω \omega ω趋于0, n ω n\omega 变成连续的了,所以傅里叶正变换公式就是

F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F\left( \omega \right) =\int_{-\infty}^{\infty}{f\left( t \right) e^{-j\omega t}dt} F(ω)=f(t)etdt

傅里叶逆变换

先看傅里叶级数的指数形式
f ( t ) = ∑ n = − ∞ ∞ F n e j n ω t f\left( t \right) =\sum_{n=-\infty}^{\infty}{F_ne^{jn\omega t}} f(t)=n=Fnejnωt
为了凑出 F ( ω ) F(\omega) F(ω),我们要这样处理
f ( t ) = ∑ n = − ∞ ∞ F n T e j n ω t ⋅ 1 T f\left( t \right) =\sum_{n=-\infty}^{\infty}{F_nTe^{jn\omega t}\cdot \frac{1}{T}} f(t)=n=FnTejnωtT1
我们令 T → ∞ T\rightarrow \infty T,则 ω → 0 \omega \rightarrow 0 ω0,取其为 d ω d\omega dω,我们就可以将上式的 1 T \frac{1}{T} T1改为 2 π T ⋅ 1 2 π \frac{2\pi}{T}\cdot \frac{1}{2\pi} T2π2π1 ω \omega ω趋于0, n ω n\omega 变成连续的了,求和符号应变为积分符号,所以 f ( t ) f(t) f(t)最后为

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω f\left( t \right) =\frac{1}{2\pi}\int_{-\infty}^{\infty}{F(\omega )}e^{j\omega t}d\omega f(t)=2π1F(ω)etdω
这就是傅里叶逆变换。

总结

傅里叶正变换

F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F\left( \omega \right) =\int_{-\infty}^{\infty}{f\left( t \right) e^{-j\omega t}dt} F(ω)=f(t)etdt

傅里叶逆变换

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω f\left( t \right) =\frac{1}{2\pi}\int_{-\infty}^{\infty}{F(\omega )}e^{j\omega t}d\omega f(t)=2π1F(ω)etdω

这篇关于学习通信原理之——傅里叶正变换/傅里叶逆变换公式的证明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732441

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;