目标跟踪openCV Camshift和meanshift 源代码

2024-02-20 20:18

本文主要是介绍目标跟踪openCV Camshift和meanshift 源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要。为了让大家先达到一个感性认识。这节主要是看懂和运行opencv中给的sample并稍加修改。

     Camshift函数的原型为:RotatedRect CamShift(InputArray probImage, Rect& window, TermCriteria criteria)。

     其中probImage为输入图像直方图的反向投影图,window为要跟踪目标的初始位置矩形框,criteria为算法结束条件。函数返回一个有方向角度的矩阵。该函数的实现首先是利用meanshift算法计算出要跟踪的中心,然后调整初始窗口的大小位置和方向角度。在camshift内部调用了meanshift算法计算目标的重心。

     下面是一个opencv自带的CamShift算法使用工程实例。该实例的作用是跟踪摄像头中目标物体,目标物体初始位置用鼠标指出,其跟踪窗口大小和方向随着目标物体的变化而变化。其代码及注释大概如下:

[cpp] view plain copy print ? 在CODE上查看代码片 派生到我的代码片
  1. #include "StdAfx.h"  
  2.   
  3. #include "opencv2/video/tracking.hpp"  
  4. #include "opencv2/imgproc/imgproc.hpp"  
  5. #include "opencv2/highgui/highgui.hpp"  
  6.   
  7.   
  8. #include <iostream>  
  9. #include <ctype.h>  
  10.   
  11. using namespace cv;  
  12. using namespace std;  
  13.   
  14. Mat image;  
  15.   
  16. bool backprojMode = false//表示是否要进入反向投影模式,ture表示准备进入反向投影模式  
  17. bool selectObject = false;//代表是否在选要跟踪的初始目标,true表示正在用鼠标选择  
  18. int trackObject = 0; //代表跟踪目标数目  
  19. bool showHist = true;//是否显示直方图  
  20. Point origin;//用于保存鼠标选择第一次单击时点的位置  
  21. Rect selection;//用于保存鼠标选择的矩形框  
  22. int vmin = 10, vmax = 256, smin = 30;  
  23.   
  24. void onMouse( int event, int x, int y, intvoid* )  
  25. {  
  26.     if( selectObject )//只有当鼠标左键按下去时才有效,然后通过if里面代码就可以确定所选择的矩形区域selection了  
  27.     {  
  28.         selection.x = MIN(x, origin.x);//矩形左上角顶点坐标  
  29.         selection.y = MIN(y, origin.y);  
  30.         selection.width = std::abs(x - origin.x);//矩形宽  
  31.         selection.height = std::abs(y - origin.y);//矩形高  
  32.   
  33.         selection &= Rect(0, 0, image.cols, image.rows);//用于确保所选的矩形区域在图片范围内  
  34.     }  
  35.   
  36.     switch( event )  
  37.     {  
  38.     case CV_EVENT_LBUTTONDOWN:  
  39.         origin = Point(x,y);  
  40.         selection = Rect(x,y,0,0);//鼠标刚按下去时初始化了一个矩形区域  
  41.         selectObject = true;  
  42.         break;  
  43.     case CV_EVENT_LBUTTONUP:  
  44.         selectObject = false;  
  45.         if( selection.width > 0 && selection.height > 0 )  
  46.             trackObject = -1;  
  47.         break;  
  48.     }  
  49. }  
  50.   
  51. void help()  
  52. {  
  53.     cout << "\nThis is a demo that shows mean-shift based tracking\n"  
  54.             "You select a color objects such as your face and it tracks it.\n"  
  55.             "This reads from video camera (0 by default, or the camera number the user enters\n"  
  56.             "Usage: \n"  
  57.             "    ./camshiftdemo [camera number]\n";  
  58.   
  59.     cout << "\n\nHot keys: \n"  
  60.             "\tESC - quit the program\n"  
  61.             "\tc - stop the tracking\n"  
  62.             "\tb - switch to/from backprojection view\n"  
  63.             "\th - show/hide object histogram\n"  
  64.             "\tp - pause video\n"  
  65.             "To initialize tracking, select the object with mouse\n";  
  66. }  
  67.   
  68. const char* keys =   
  69. {  
  70.     "{1|  | 0 | camera number}"  
  71. };  
  72.   
  73. int main( int argc, const char** argv )  
  74. {  
  75.     help();  
  76.   
  77.     VideoCapture cap; //定义一个摄像头捕捉的类对象  
  78.     Rect trackWindow;  
  79.     RotatedRect trackBox;//定义一个旋转的矩阵类对象  
  80.     int hsize = 16;  
  81.     float hranges[] = {0,180};//hranges在后面的计算直方图函数中要用到  
  82.     const float* phranges = hranges;  
  83.     CommandLineParser parser(argc, argv, keys);//命令解析器函数  
  84.     int camNum = parser.get<int>("1");       
  85.       
  86.     cap.open(camNum);//直接调用成员函数打开摄像头  
  87.   
  88.     if( !cap.isOpened() )  
  89.     {  
  90.         help();  
  91.         cout << "***Could not initialize capturing...***\n";  
  92.         cout << "Current parameter's value: \n";  
  93.         parser.printParams();  
  94.         return -1;  
  95.     }  
  96.   
  97.     namedWindow( "Histogram", 0 );  
  98.     namedWindow( "CamShift Demo", 0 );  
  99.     setMouseCallback( "CamShift Demo", onMouse, 0 );//消息响应机制  
  100.     createTrackbar( "Vmin""CamShift Demo", &vmin, 256, 0 );//createTrackbar函数的功能是在对应的窗口创建滑动条,滑动条Vmin,vmin表示滑动条的值,最大为256  
  101.     createTrackbar( "Vmax""CamShift Demo", &vmax, 256, 0 );//最后一个参数为0代表没有调用滑动拖动的响应函数  
  102.     createTrackbar( "Smin""CamShift Demo", &smin, 256, 0 );//vmin,vmax,smin初始值分别为10,256,30  
  103.   
  104.     Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;  
  105.     bool paused = false;  
  106.       
  107.     for(;;)  
  108.     {  
  109.         if( !paused )//没有暂停  
  110.         {  
  111.             cap >> frame;//从摄像头抓取一帧图像并输出到frame中  
  112.             if( frame.empty() )  
  113.                 break;  
  114.         }  
  115.   
  116.         frame.copyTo(image);  
  117.           
  118.         if( !paused )//没有按暂停键  
  119.         {  
  120.             cvtColor(image, hsv, CV_BGR2HSV);//将rgb摄像头帧转化成hsv空间的  
  121.   
  122.             if( trackObject )//trackObject初始化为0,或者按完键盘的'c'键后也为0,当鼠标单击松开后为-1  
  123.             {  
  124.                 int _vmin = vmin, _vmax = vmax;  
  125.   
  126.                 //inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask保存0通道的最小值,也就是h分量  
  127. //这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则  
  128. //mask对应的那个点的值全为1(0xff),否则为0(0x00).  
  129.                 inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),  
  130.                         Scalar(180, 256, MAX(_vmin, _vmax)), mask);  
  131.                 int ch[] = {0, 0};  
  132.                 hue.create(hsv.size(), hsv.depth());//hue初始化为与hsv大小深度一样的矩阵,色调的度量是用角度表示的,红绿蓝之间相差120度,反色相差180度  
  133.                 mixChannels(&hsv, 1, &hue, 1, ch, 1);//将hsv第一个通道(也就是色调)的数复制到hue中,0索引数组  
  134.   
  135.                 if( trackObject < 0 )//鼠标选择区域松开后,该函数内部又将其赋值1  
  136.                 {  
  137.                     //此处的构造函数roi用的是Mat hue的矩阵头,且roi的数据指针指向hue,即共用相同的数据,select为其感兴趣的区域  
  138.                     Mat roi(hue, selection), maskroi(mask, selection);//mask保存的hsv的最小值  
  139.   
  140. //calcHist()函数第一个参数为输入矩阵序列,第2个参数表示输入的矩阵数目,第3个参数表示将被计算直方图维数通道的列表,第4个参数表示可选的掩码函数  
  141. //第5个参数表示输出直方图,第6个参数表示直方图的维数,第7个参数为每一维直方图数组的大小,第8个参数为每一维直方图bin的边界  
  142.                     calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);//将roi的0通道计算直方图并通过mask放入hist中,hsize为每一维直方图的大小  
  143.                     normalize(hist, hist, 0, 255, CV_MINMAX);//将hist矩阵进行数组范围归一化,都归一化到0~255  
  144.                       
  145.                     trackWindow = selection;  
  146.                     trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键'c',则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域  
  147.   
  148.                     histimg = Scalar::all(0);//与按下'c'键是一样的,这里的all(0)表示的是标量全部清0  
  149.                     int binW = histimg.cols / hsize;  //histing是一个200*300的矩阵,hsize应该是每一个bin的宽度,也就是histing矩阵能分出几个bin出来  
  150.                     Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵  
  151.                     forint i = 0; i < hsize; i++ )//saturate_case函数为从一个初始类型准确变换到另一个初始类型  
  152.                         buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);//Vec3b为3个char值的向量  
  153.                     cvtColor(buf, buf, CV_HSV2BGR);//将hsv又转换成bgr  
  154.                           
  155.                     forint i = 0; i < hsize; i++ )  
  156.                     {  
  157.                         int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//at函数为返回一个指定数组元素的参考值  
  158.                         rectangle( histimg, Point(i*binW,histimg.rows),    //在一幅输入图像上画一个简单抽的矩形,指定左上角和右下角,并定义颜色,大小,线型等  
  159.                                    Point((i+1)*binW,histimg.rows - val),  
  160.                                    Scalar(buf.at<Vec3b>(i)), -1, 8 );  
  161.                     }  
  162.                 }  
  163.   
  164.                 calcBackProject(&hue, 1, 0, hist, backproj, &phranges);//计算直方图的反向投影,计算hue图像0通道直方图hist的反向投影,并让入backproj中  
  165.                 backproj &= mask;  
  166.   
  167.                 //opencv2.0以后的版本函数命名前没有cv两字了,并且如果函数名是由2个意思的单词片段组成的话,且前面那个片段不够成单词,则第一个字母要  
  168. //大写,比如Camshift,如果第一个字母是个单词,则小写,比如meanShift,但是第二个字母一定要大写  
  169.                 RotatedRect trackBox = CamShift(backproj, trackWindow,               //trackWindow为鼠标选择的区域,TermCriteria为确定迭代终止的准则  
  170.                                     TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));//CV_TERMCRIT_EPS是通过forest_accuracy,CV_TERMCRIT_ITER  
  171.                 if( trackWindow.area() <= 1 )                                                  //是通过max_num_of_trees_in_the_forest    
  172.                 {  
  173.                     int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;  
  174.                     trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,  
  175.                                        trackWindow.x + r, trackWindow.y + r) &  
  176.                                   Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高  
  177.                 }  
  178.   
  179.                 if( backprojMode )  
  180.                     cvtColor( backproj, image, CV_GRAY2BGR );//因此投影模式下显示的也是rgb图?  
  181.                 ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );//跟踪的时候以椭圆为代表目标  
  182.             }  
  183.         }  
  184.   
  185.         //后面的代码是不管pause为真还是为假都要执行的  
  186.         else if( trackObject < 0 )//同时也是在按了暂停字母以后  
  187.             paused = false;  
  188.   
  189.         if( selectObject && selection.width > 0 && selection.height > 0 )  
  190.         {  
  191.             Mat roi(image, selection);  
  192.             bitwise_not(roi, roi);//bitwise_not为将每一个bit位取反  
  193.         }  
  194.   
  195.         imshow( "CamShift Demo", image );  
  196.         imshow( "Histogram", histimg );  
  197.   
  198.         char c = (char)waitKey(10);  
  199.         if( c == 27 )              //退出键  
  200.             break;  
  201.         switch(c)  
  202.         {  
  203.         case 'b':             //反向投影模型交替  
  204.             backprojMode = !backprojMode;  
  205.             break;  
  206.         case 'c':            //清零跟踪目标对象  
  207.             trackObject = 0;  
  208.             histimg = Scalar::all(0);  
  209.             break;  
  210.         case 'h':          //显示直方图交替  
  211.             showHist = !showHist;  
  212.             if( !showHist )  
  213.                 destroyWindow( "Histogram" );  
  214.             else  
  215.                 namedWindow( "Histogram", 1 );  
  216.             break;  
  217.         case 'p':       //暂停跟踪交替  
  218.             paused = !paused;  
  219.             break;  
  220.         default:  
  221.             ;  
  222.         }  
  223.     }  
  224.     return 0;  
  225. }  
#include "StdAfx.h"#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"#include <iostream>
#include <ctype.h>using namespace cv;
using namespace std;Mat image;bool backprojMode = false; //表示是否要进入反向投影模式,ture表示准备进入反向投影模式
bool selectObject = false;//代表是否在选要跟踪的初始目标,true表示正在用鼠标选择
int trackObject = 0; //代表跟踪目标数目
bool showHist = true;//是否显示直方图
Point origin;//用于保存鼠标选择第一次单击时点的位置
Rect selection;//用于保存鼠标选择的矩形框
int vmin = 10, vmax = 256, smin = 30;void onMouse( int event, int x, int y, int, void* )
{if( selectObject )//只有当鼠标左键按下去时才有效,然后通过if里面代码就可以确定所选择的矩形区域selection了{selection.x = MIN(x, origin.x);//矩形左上角顶点坐标selection.y = MIN(y, origin.y);selection.width = std::abs(x - origin.x);//矩形宽selection.height = std::abs(y - origin.y);//矩形高selection &= Rect(0, 0, image.cols, image.rows);//用于确保所选的矩形区域在图片范围内}switch( event ){case CV_EVENT_LBUTTONDOWN:origin = Point(x,y);selection = Rect(x,y,0,0);//鼠标刚按下去时初始化了一个矩形区域selectObject = true;break;case CV_EVENT_LBUTTONUP:selectObject = false;if( selection.width > 0 && selection.height > 0 )trackObject = -1;break;}
}void help()
{cout << "\nThis is a demo that shows mean-shift based tracking\n""You select a color objects such as your face and it tracks it.\n""This reads from video camera (0 by default, or the camera number the user enters\n""Usage: \n""    ./camshiftdemo [camera number]\n";cout << "\n\nHot keys: \n""\tESC - quit the program\n""\tc - stop the tracking\n""\tb - switch to/from backprojection view\n""\th - show/hide object histogram\n""\tp - pause video\n""To initialize tracking, select the object with mouse\n";
}const char* keys = 
{"{1|  | 0 | camera number}"
};int main( int argc, const char** argv )
{help();VideoCapture cap; //定义一个摄像头捕捉的类对象Rect trackWindow;RotatedRect trackBox;//定义一个旋转的矩阵类对象int hsize = 16;float hranges[] = {0,180};//hranges在后面的计算直方图函数中要用到const float* phranges = hranges;CommandLineParser parser(argc, argv, keys);//命令解析器函数int camNum = parser.get<int>("1");     cap.open(camNum);//直接调用成员函数打开摄像头if( !cap.isOpened() ){help();cout << "***Could not initialize capturing...***\n";cout << "Current parameter's value: \n";parser.printParams();return -1;}namedWindow( "Histogram", 0 );namedWindow( "CamShift Demo", 0 );setMouseCallback( "CamShift Demo", onMouse, 0 );//消息响应机制createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );//createTrackbar函数的功能是在对应的窗口创建滑动条,滑动条Vmin,vmin表示滑动条的值,最大为256createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );//最后一个参数为0代表没有调用滑动拖动的响应函数createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );//vmin,vmax,smin初始值分别为10,256,30Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;bool paused = false;for(;;){if( !paused )//没有暂停{cap >> frame;//从摄像头抓取一帧图像并输出到frame中if( frame.empty() )break;}frame.copyTo(image);if( !paused )//没有按暂停键{cvtColor(image, hsv, CV_BGR2HSV);//将rgb摄像头帧转化成hsv空间的if( trackObject )//trackObject初始化为0,或者按完键盘的'c'键后也为0,当鼠标单击松开后为-1{int _vmin = vmin, _vmax = vmax;//inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask保存0通道的最小值,也就是h分量
//这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则
//mask对应的那个点的值全为1(0xff),否则为0(0x00).inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),Scalar(180, 256, MAX(_vmin, _vmax)), mask);int ch[] = {0, 0};hue.create(hsv.size(), hsv.depth());//hue初始化为与hsv大小深度一样的矩阵,色调的度量是用角度表示的,红绿蓝之间相差120度,反色相差180度mixChannels(&hsv, 1, &hue, 1, ch, 1);//将hsv第一个通道(也就是色调)的数复制到hue中,0索引数组if( trackObject < 0 )//鼠标选择区域松开后,该函数内部又将其赋值1{//此处的构造函数roi用的是Mat hue的矩阵头,且roi的数据指针指向hue,即共用相同的数据,select为其感兴趣的区域Mat roi(hue, selection), maskroi(mask, selection);//mask保存的hsv的最小值//calcHist()函数第一个参数为输入矩阵序列,第2个参数表示输入的矩阵数目,第3个参数表示将被计算直方图维数通道的列表,第4个参数表示可选的掩码函数
//第5个参数表示输出直方图,第6个参数表示直方图的维数,第7个参数为每一维直方图数组的大小,第8个参数为每一维直方图bin的边界calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);//将roi的0通道计算直方图并通过mask放入hist中,hsize为每一维直方图的大小normalize(hist, hist, 0, 255, CV_MINMAX);//将hist矩阵进行数组范围归一化,都归一化到0~255trackWindow = selection;trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键'c',则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域histimg = Scalar::all(0);//与按下'c'键是一样的,这里的all(0)表示的是标量全部清0int binW = histimg.cols / hsize;  //histing是一个200*300的矩阵,hsize应该是每一个bin的宽度,也就是histing矩阵能分出几个bin出来Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵for( int i = 0; i < hsize; i++ )//saturate_case函数为从一个初始类型准确变换到另一个初始类型buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);//Vec3b为3个char值的向量cvtColor(buf, buf, CV_HSV2BGR);//将hsv又转换成bgrfor( int i = 0; i < hsize; i++ ){int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//at函数为返回一个指定数组元素的参考值rectangle( histimg, Point(i*binW,histimg.rows),    //在一幅输入图像上画一个简单抽的矩形,指定左上角和右下角,并定义颜色,大小,线型等Point((i+1)*binW,histimg.rows - val),Scalar(buf.at<Vec3b>(i)), -1, 8 );}}calcBackProject(&hue, 1, 0, hist, backproj, &phranges);//计算直方图的反向投影,计算hue图像0通道直方图hist的反向投影,并让入backproj中backproj &= mask;//opencv2.0以后的版本函数命名前没有cv两字了,并且如果函数名是由2个意思的单词片段组成的话,且前面那个片段不够成单词,则第一个字母要
//大写,比如Camshift,如果第一个字母是个单词,则小写,比如meanShift,但是第二个字母一定要大写RotatedRect trackBox = CamShift(backproj, trackWindow,               //trackWindow为鼠标选择的区域,TermCriteria为确定迭代终止的准则TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));//CV_TERMCRIT_EPS是通过forest_accuracy,CV_TERMCRIT_ITERif( trackWindow.area() <= 1 )                                                  //是通过max_num_of_trees_in_the_forest  {int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,trackWindow.x + r, trackWindow.y + r) &Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高}if( backprojMode )cvtColor( backproj, image, CV_GRAY2BGR );//因此投影模式下显示的也是rgb图?ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );//跟踪的时候以椭圆为代表目标}}//后面的代码是不管pause为真还是为假都要执行的else if( trackObject < 0 )//同时也是在按了暂停字母以后paused = false;if( selectObject && selection.width > 0 && selection.height > 0 ){Mat roi(image, selection);bitwise_not(roi, roi);//bitwise_not为将每一个bit位取反}imshow( "CamShift Demo", image );imshow( "Histogram", histimg );char c = (char)waitKey(10);if( c == 27 )              //退出键break;switch(c){case 'b':             //反向投影模型交替backprojMode = !backprojMode;break;case 'c':            //清零跟踪目标对象trackObject = 0;histimg = Scalar::all(0);break;case 'h':          //显示直方图交替showHist = !showHist;if( !showHist )destroyWindow( "Histogram" );elsenamedWindow( "Histogram", 1 );break;case 'p':       //暂停跟踪交替paused = !paused;break;default:;}}return 0;
}

另外,由于Camshift主要是利用到了meanShift算法,在目标跟踪领域应用比较广泛,而meanShift也可以用于目标跟踪,只是自适用性没CamShift好,但也可以用。首先看看meanShift算法的声明:

int meanShift(InputArray probImage, Rect& window, TermCriteria criteria)

      与CamShift函数不同的一点是,它返回的不是一个矩形框,而是一个int型变量。该int型变量应该是代表找到目标物体的个数。特别需要注意的是参数window,它不仅是目标物体初始化的位置,还是实时跟踪目标后的位置,所以其实也是一个返回值。由于meanShift好像主要不是用于目标跟踪上,很多应用是在图像分割上。但是这里还是将CamShift算法例子稍微改一下,就成了meanShift算法了。主要是用window代替CamShift中的trackWindow.

其代码注释如下:


[cpp] view plain copy print ? 在CODE上查看代码片 派生到我的代码片
  1. #include "StdAfx.h"  
  2.   
  3. #include "opencv2/video/tracking.hpp"  
  4. #include "opencv2/imgproc/imgproc.hpp"  
  5. #include "opencv2/highgui/highgui.hpp"  
  6.   
  7.   
  8. #include <iostream>  
  9. #include <ctype.h>  
  10.   
  11. using namespace cv;  
  12. using namespace std;  
  13.   
  14. Mat image;  
  15.   
  16. bool backprojMode = false//表示是否要进入反向投影模式,ture表示准备进入反向投影模式  
  17. bool selectObject = false;//代表是否在选要跟踪的初始目标,true表示正在用鼠标选择  
  18. int trackObject = 0; //代表跟踪目标数目  
  19. bool showHist = true;//是否显示直方图  
  20. Point origin;//用于保存鼠标选择第一次单击时点的位置  
  21. Rect selection;//用于保存鼠标选择的矩形框  
  22. int vmin = 10, vmax = 256, smin = 30;  
  23.   
  24. void onMouse( int event, int x, int y, intvoid* )  
  25. {  
  26.     if( selectObject )//只有当鼠标左键按下去时才有效,然后通过if里面代码就可以确定所选择的矩形区域selection了  
  27.     {  
  28.         selection.x = MIN(x, origin.x);//矩形左上角顶点坐标  
  29.         selection.y = MIN(y, origin.y);  
  30.         selection.width = std::abs(x - origin.x);//矩形宽  
  31.         selection.height = std::abs(y - origin.y);//矩形高  
  32.   
  33.         selection &= Rect(0, 0, image.cols, image.rows);//用于确保所选的矩形区域在图片范围内  
  34.     }  
  35.   
  36.     switch( event )  
  37.     {  
  38.     case CV_EVENT_LBUTTONDOWN:  
  39.         origin = Point(x,y);  
  40.         selection = Rect(x,y,0,0);//鼠标刚按下去时初始化了一个矩形区域  
  41.         selectObject = true;  
  42.         break;  
  43.     case CV_EVENT_LBUTTONUP:  
  44.         selectObject = false;  
  45.         if( selection.width > 0 && selection.height > 0 )  
  46.             trackObject = -1;  
  47.         break;  
  48.     }  
  49. }  
  50.   
  51. void help()  
  52. {  
  53.     cout << "\nThis is a demo that shows mean-shift based tracking\n"  
  54.         "You select a color objects such as your face and it tracks it.\n"  
  55.         "This reads from video camera (0 by default, or the camera number the user enters\n"  
  56.         "Usage: \n"  
  57.         "    ./camshiftdemo [camera number]\n";  
  58.   
  59.     cout << "\n\nHot keys: \n"  
  60.         "\tESC - quit the program\n"  
  61.         "\tc - stop the tracking\n"  
  62.         "\tb - switch to/from backprojection view\n"  
  63.         "\th - show/hide object histogram\n"  
  64.         "\tp - pause video\n"  
  65.         "To initialize tracking, select the object with mouse\n";  
  66. }  
  67.   
  68. const char* keys =   
  69. {  
  70.     "{1|  | 0 | camera number}"  
  71. };  
  72.   
  73. int main( int argc, const char** argv )  
  74. {  
  75.     help();  
  76.   
  77.     VideoCapture cap; //定义一个摄像头捕捉的类对象  
  78.     Rect trackWindow;  
  79.     RotatedRect trackBox;//定义一个旋转的矩阵类对象  
  80.     int hsize = 16;  
  81.     float hranges[] = {0,180};//hranges在后面的计算直方图函数中要用到  
  82.     const float* phranges = hranges;  
  83.     CommandLineParser parser(argc, argv, keys);//命令解析器函数  
  84.     int camNum = parser.get<int>("1");       
  85.   
  86.     cap.open(camNum);//直接调用成员函数打开摄像头  
  87.   
  88.     if( !cap.isOpened() )  
  89.     {  
  90.         help();  
  91.         cout << "***Could not initialize capturing...***\n";  
  92.         cout << "Current parameter's value: \n";  
  93.         parser.printParams();  
  94.         return -1;  
  95.     }  
  96.   
  97.     namedWindow( "Histogram", 0 );  
  98.     namedWindow( "CamShift Demo", 0 );  
  99.     setMouseCallback( "CamShift Demo", onMouse, 0 );//消息响应机制  
  100.     createTrackbar( "Vmin""CamShift Demo", &vmin, 256, 0 );//createTrackbar函数的功能是在对应的窗口创建滑动条,滑动条Vmin,vmin表示滑动条的值,最大为256  
  101.     createTrackbar( "Vmax""CamShift Demo", &vmax, 256, 0 );//最后一个参数为0代表没有调用滑动拖动的响应函数  
  102.     createTrackbar( "Smin""CamShift Demo", &smin, 256, 0 );//vmin,vmax,smin初始值分别为10,256,30  
  103.   
  104.     Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;  
  105.     bool paused = false;  
  106.   
  107.     for(;;)  
  108.     {  
  109.         if( !paused )//没有暂停  
  110.         {  
  111.             cap >> frame;//从摄像头抓取一帧图像并输出到frame中  
  112.             if( frame.empty() )  
  113.                 break;  
  114.         }  
  115.   
  116.         frame.copyTo(image);  
  117.   
  118.         if( !paused )//没有按暂停键  
  119.         {  
  120.             cvtColor(image, hsv, CV_BGR2HSV);//将rgb摄像头帧转化成hsv空间的  
  121.   
  122.             if( trackObject )//trackObject初始化为0,或者按完键盘的'c'键后也为0,当鼠标单击松开后为-1  
  123.             {  
  124.                 int _vmin = vmin, _vmax = vmax;  
  125.   
  126.                 //inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask保存0通道的最小值,也就是h分量  
  127.                 //这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则  
  128.                 //mask对应的那个点的值全为1(0xff),否则为0(0x00).  
  129.                 inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),  
  130.                     Scalar(180, 256, MAX(_vmin, _vmax)), mask);  
  131.                 int ch[] = {0, 0};  
  132.                 hue.create(hsv.size(), hsv.depth());//hue初始化为与hsv大小深度一样的矩阵,色调的度量是用角度表示的,红绿蓝之间相差120度,反色相差180度  
  133.                 mixChannels(&hsv, 1, &hue, 1, ch, 1);//将hsv第一个通道(也就是色调)的数复制到hue中,0索引数组  
  134.   
  135.                 if( trackObject < 0 )//鼠标选择区域松开后,该函数内部又将其赋值1  
  136.                 {  
  137.                     //此处的构造函数roi用的是Mat hue的矩阵头,且roi的数据指针指向hue,即共用相同的数据,select为其感兴趣的区域  
  138.                     Mat roi(hue, selection), maskroi(mask, selection);//mask保存的hsv的最小值  
  139.   
  140.                     //calcHist()函数第一个参数为输入矩阵序列,第2个参数表示输入的矩阵数目,第3个参数表示将被计算直方图维数通道的列表,第4个参数表示可选的掩码函数  
  141.                     //第5个参数表示输出直方图,第6个参数表示直方图的维数,第7个参数为每一维直方图数组的大小,第8个参数为每一维直方图bin的边界  
  142.                     calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);//将roi的0通道计算直方图并通过mask放入hist中,hsize为每一维直方图的大小  
  143.                     normalize(hist, hist, 0, 255, CV_MINMAX);//将hist矩阵进行数组范围归一化,都归一化到0~255  
  144.   
  145.                     trackWindow = selection;  
  146.                     trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键'c',则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域  
  147.   
  148.                     histimg = Scalar::all(0);//与按下'c'键是一样的,这里的all(0)表示的是标量全部清0  
  149.                     int binW = histimg.cols / hsize;  //histing是一个200*300的矩阵,hsize应该是每一个bin的宽度,也就是histing矩阵能分出几个bin出来  
  150.                     Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵  
  151.                     forint i = 0; i < hsize; i++ )//saturate_case函数为从一个初始类型准确变换到另一个初始类型  
  152.                         buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);//Vec3b为3个char值的向量  
  153.                     cvtColor(buf, buf, CV_HSV2BGR);//将hsv又转换成bgr  
  154.   
  155.                     forint i = 0; i < hsize; i++ )  
  156.                     {  
  157.                         int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//at函数为返回一个指定数组元素的参考值  
  158.                         rectangle( histimg, Point(i*binW,histimg.rows),    //在一幅输入图像上画一个简单抽的矩形,指定左上角和右下角,并定义颜色,大小,线型等  
  159.                             Point((i+1)*binW,histimg.rows - val),  
  160.                             Scalar(buf.at<Vec3b>(i)), -1, 8 );  
  161.                     }  
  162.                 }  
  163.   
  164.                 calcBackProject(&hue, 1, 0, hist, backproj, &phranges);//计算直方图的反向投影,计算hue图像0通道直方图hist的反向投影,并让入backproj中  
  165.                 backproj &= mask;  
  166.   
  167.                 //opencv2.0以后的版本函数命名前没有cv两字了,并且如果函数名是由2个意思的单词片段组成的话,且前面那个片段不够成单词,则第一个字母要  
  168.                 //大写,比如Camshift,如果第一个字母是个单词,则小写,比如meanShift,但是第二个字母一定要大写  
  169.                 meanShift(backproj, trackWindow,               //trackWindow为鼠标选择的区域,TermCriteria为确定迭代终止的准则  
  170.                     TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));//CV_TERMCRIT_EPS是通过forest_accuracy,CV_TERMCRIT_ITER  
  171.                 if( trackWindow.area() <= 1 )                                                  //是通过max_num_of_trees_in_the_forest    
  172.                 {  
  173.                     int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;  
  174.                     trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,  
  175.                         trackWindow.x + r, trackWindow.y + r) &  
  176.                         Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高  
  177.                 }  
  178.   
  179.                 if( backprojMode )  
  180.                     cvtColor( backproj, image, CV_GRAY2BGR );//因此投影模式下显示的也是rgb图?  
  181.                 //ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );//跟踪的时候以椭圆为代表目标  
  182.                 rectangle(image,Point(trackWindow.x,trackWindow.y),Point(trackWindow.x+trackWindow.width,trackWindow.y+trackWindow.height),Scalar(0,0,255),-1,CV_AA);  
  183.             }  
  184.         }  
  185.   
  186.         //后面的代码是不管pause为真还是为假都要执行的  
  187.         else if( trackObject < 0 )//同时也是在按了暂停字母以后  
  188.             paused = false;  
  189.   
  190.         if( selectObject && selection.width > 0 && selection.height > 0 )  
  191.         {  
  192.             Mat roi(image, selection);  
  193.             bitwise_not(roi, roi);//bitwise_not为将每一个bit位取反  
  194.         }  
  195.   
  196.         imshow( "CamShift Demo", image );  
  197.         imshow( "Histogram", histimg );  
  198.   
  199.         char c = (char)waitKey(10);  
  200.         if( c == 27 )              //退出键  
  201.             break;  
  202.         switch(c)  
  203.         {  
  204.         case 'b':             //反向投影模型交替  
  205.             backprojMode = !backprojMode;  
  206.             break;  
  207.         case 'c':            //清零跟踪目标对象  
  208.             trackObject = 0;  
  209.             histimg = Scalar::all(0);  
  210.             break;  
  211.         case 'h':          //显示直方图交替  
  212.             showHist = !showHist;  
  213.             if( !showHist )  
  214.                 destroyWindow( "Histogram" );  
  215.             else  
  216.                 namedWindow( "Histogram", 1 );  
  217.             break;  
  218.         case 'p':       //暂停跟踪交替  
  219.             paused = !paused;  
  220.             break;  
  221.         default:  
  222.             ;  
  223.         }  
  224.     }  
  225.     return 0;  
  226. }  
#include "StdAfx.h"#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"#include <iostream>
#include <ctype.h>using namespace cv;
using namespace std;Mat image;bool backprojMode = false; //表示是否要进入反向投影模式,ture表示准备进入反向投影模式
bool selectObject = false;//代表是否在选要跟踪的初始目标,true表示正在用鼠标选择
int trackObject = 0; //代表跟踪目标数目
bool showHist = true;//是否显示直方图
Point origin;//用于保存鼠标选择第一次单击时点的位置
Rect selection;//用于保存鼠标选择的矩形框
int vmin = 10, vmax = 256, smin = 30;void onMouse( int event, int x, int y, int, void* )
{if( selectObject )//只有当鼠标左键按下去时才有效,然后通过if里面代码就可以确定所选择的矩形区域selection了{selection.x = MIN(x, origin.x);//矩形左上角顶点坐标selection.y = MIN(y, origin.y);selection.width = std::abs(x - origin.x);//矩形宽selection.height = std::abs(y - origin.y);//矩形高selection &= Rect(0, 0, image.cols, image.rows);//用于确保所选的矩形区域在图片范围内}switch( event ){case CV_EVENT_LBUTTONDOWN:origin = Point(x,y);selection = Rect(x,y,0,0);//鼠标刚按下去时初始化了一个矩形区域selectObject = true;break;case CV_EVENT_LBUTTONUP:selectObject = false;if( selection.width > 0 && selection.height > 0 )trackObject = -1;break;}
}void help()
{cout << "\nThis is a demo that shows mean-shift based tracking\n""You select a color objects such as your face and it tracks it.\n""This reads from video camera (0 by default, or the camera number the user enters\n""Usage: \n""    ./camshiftdemo [camera number]\n";cout << "\n\nHot keys: \n""\tESC - quit the program\n""\tc - stop the tracking\n""\tb - switch to/from backprojection view\n""\th - show/hide object histogram\n""\tp - pause video\n""To initialize tracking, select the object with mouse\n";
}const char* keys = 
{"{1|  | 0 | camera number}"
};int main( int argc, const char** argv )
{help();VideoCapture cap; //定义一个摄像头捕捉的类对象Rect trackWindow;RotatedRect trackBox;//定义一个旋转的矩阵类对象int hsize = 16;float hranges[] = {0,180};//hranges在后面的计算直方图函数中要用到const float* phranges = hranges;CommandLineParser parser(argc, argv, keys);//命令解析器函数int camNum = parser.get<int>("1");     cap.open(camNum);//直接调用成员函数打开摄像头if( !cap.isOpened() ){help();cout << "***Could not initialize capturing...***\n";cout << "Current parameter's value: \n";parser.printParams();return -1;}namedWindow( "Histogram", 0 );namedWindow( "CamShift Demo", 0 );setMouseCallback( "CamShift Demo", onMouse, 0 );//消息响应机制createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );//createTrackbar函数的功能是在对应的窗口创建滑动条,滑动条Vmin,vmin表示滑动条的值,最大为256createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );//最后一个参数为0代表没有调用滑动拖动的响应函数createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );//vmin,vmax,smin初始值分别为10,256,30Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;bool paused = false;for(;;){if( !paused )//没有暂停{cap >> frame;//从摄像头抓取一帧图像并输出到frame中if( frame.empty() )break;}frame.copyTo(image);if( !paused )//没有按暂停键{cvtColor(image, hsv, CV_BGR2HSV);//将rgb摄像头帧转化成hsv空间的if( trackObject )//trackObject初始化为0,或者按完键盘的'c'键后也为0,当鼠标单击松开后为-1{int _vmin = vmin, _vmax = vmax;//inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask保存0通道的最小值,也就是h分量//这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则//mask对应的那个点的值全为1(0xff),否则为0(0x00).inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),Scalar(180, 256, MAX(_vmin, _vmax)), mask);int ch[] = {0, 0};hue.create(hsv.size(), hsv.depth());//hue初始化为与hsv大小深度一样的矩阵,色调的度量是用角度表示的,红绿蓝之间相差120度,反色相差180度mixChannels(&hsv, 1, &hue, 1, ch, 1);//将hsv第一个通道(也就是色调)的数复制到hue中,0索引数组if( trackObject < 0 )//鼠标选择区域松开后,该函数内部又将其赋值1{//此处的构造函数roi用的是Mat hue的矩阵头,且roi的数据指针指向hue,即共用相同的数据,select为其感兴趣的区域Mat roi(hue, selection), maskroi(mask, selection);//mask保存的hsv的最小值//calcHist()函数第一个参数为输入矩阵序列,第2个参数表示输入的矩阵数目,第3个参数表示将被计算直方图维数通道的列表,第4个参数表示可选的掩码函数//第5个参数表示输出直方图,第6个参数表示直方图的维数,第7个参数为每一维直方图数组的大小,第8个参数为每一维直方图bin的边界calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);//将roi的0通道计算直方图并通过mask放入hist中,hsize为每一维直方图的大小normalize(hist, hist, 0, 255, CV_MINMAX);//将hist矩阵进行数组范围归一化,都归一化到0~255trackWindow = selection;trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键'c',则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域histimg = Scalar::all(0);//与按下'c'键是一样的,这里的all(0)表示的是标量全部清0int binW = histimg.cols / hsize;  //histing是一个200*300的矩阵,hsize应该是每一个bin的宽度,也就是histing矩阵能分出几个bin出来Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵for( int i = 0; i < hsize; i++ )//saturate_case函数为从一个初始类型准确变换到另一个初始类型buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);//Vec3b为3个char值的向量cvtColor(buf, buf, CV_HSV2BGR);//将hsv又转换成bgrfor( int i = 0; i < hsize; i++ ){int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//at函数为返回一个指定数组元素的参考值rectangle( histimg, Point(i*binW,histimg.rows),    //在一幅输入图像上画一个简单抽的矩形,指定左上角和右下角,并定义颜色,大小,线型等Point((i+1)*binW,histimg.rows - val),Scalar(buf.at<Vec3b>(i)), -1, 8 );}}calcBackProject(&hue, 1, 0, hist, backproj, &phranges);//计算直方图的反向投影,计算hue图像0通道直方图hist的反向投影,并让入backproj中backproj &= mask;//opencv2.0以后的版本函数命名前没有cv两字了,并且如果函数名是由2个意思的单词片段组成的话,且前面那个片段不够成单词,则第一个字母要//大写,比如Camshift,如果第一个字母是个单词,则小写,比如meanShift,但是第二个字母一定要大写meanShift(backproj, trackWindow,               //trackWindow为鼠标选择的区域,TermCriteria为确定迭代终止的准则TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));//CV_TERMCRIT_EPS是通过forest_accuracy,CV_TERMCRIT_ITERif( trackWindow.area() <= 1 )                                                  //是通过max_num_of_trees_in_the_forest  {int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,trackWindow.x + r, trackWindow.y + r) &Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高}if( backprojMode )cvtColor( backproj, image, CV_GRAY2BGR );//因此投影模式下显示的也是rgb图?//ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );//跟踪的时候以椭圆为代表目标rectangle(image,Point(trackWindow.x,trackWindow.y),Point(trackWindow.x+trackWindow.width,trackWindow.y+trackWindow.height),Scalar(0,0,255),-1,CV_AA);}}//后面的代码是不管pause为真还是为假都要执行的else if( trackObject < 0 )//同时也是在按了暂停字母以后paused = false;if( selectObject && selection.width > 0 && selection.height > 0 ){Mat roi(image, selection);bitwise_not(roi, roi);//bitwise_not为将每一个bit位取反}imshow( "CamShift Demo", image );imshow( "Histogram", histimg );char c = (char)waitKey(10);if( c == 27 )              //退出键break;switch(c){case 'b':             //反向投影模型交替backprojMode = !backprojMode;break;case 'c':            //清零跟踪目标对象trackObject = 0;histimg = Scalar::all(0);break;case 'h':          //显示直方图交替showHist = !showHist;if( !showHist )destroyWindow( "Histogram" );elsenamedWindow( "Histogram", 1 );break;case 'p':       //暂停跟踪交替paused = !paused;break;default:;}}return 0;
}

本文感性上认识了怎样使用meanShift()和CamShift()函数,跟进一步的实现原理需要看其相关的论文和代码才能理解。但是从本例中调用的其它函数也可以学到很多opencv函数,效果还是很不错的。

作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。

这篇关于目标跟踪openCV Camshift和meanshift 源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/729424

相关文章

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在