Python 爬取了 1.7 万条房产数据,告诉你深圳生存压力有多大!

2024-02-19 18:40

本文主要是介绍Python 爬取了 1.7 万条房产数据,告诉你深圳生存压力有多大!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近各大一二线城市的房租都有上涨,究竟整体上涨到什么程度呢?我们也不得而知,于是乎笔者为了一探究竟,便用 Python 爬取了房某下的深圳租房数据。以下是本次的样本数据:
在这里插入图片描述
除去【不限】的数据(因为可能会与后面重叠),总数据量为 16971 ,其中后半部分地区数据量偏少,是由于该区房源确实不足。

因此,此次调查也并非非常准确,权且当个娱乐项目,供大家观赏。

统计结果

我们且先看统计结果,然后再看技术分析。深圳房源分布如下,按区划分的话,其中福田与南山的房源分布是最多的。但这两块地的房租十分不菲。
在这里插入图片描述
房租单价即 1 平方米 1 个月的价格。方块越大,代表价格越高:
在这里插入图片描述
可以看出福田与南山独占鳌头,分别是 114.874 与 113.483 ,是其他地区的几倍。如果以福田 20 平方的房间为例算一下每个月的开销:

福田 20 平方房间的租金:

114.874 x 20 = 2297.48

再来个两百的水电、物业:

2297.48 + 200 = 2497.48

我们节俭一点来算的话,每天早餐 10 块,中午 25 块,晚饭 25 块:

2497.48 + 60 x 30 = 4297.48

是的,仅仅是活下来就需要 3997.48 块。隔断时间下个馆子,每个月买些衣服,交通费,谈个女朋友,与女朋友出去逛街,妥妥滴加个 3500:

4297.48 + 3500 = 7697.48

给爸妈一人一千:

7697.48 + 2000 = 9697.48

月薪一万妥妥变成了月光族。
在这里插入图片描述
如果在乡下没有寸土寸金的感觉,那么可以到北上广深体验一下,福田区每平方米每天需要 3.829 元。

户型方面主要以 3 室 2 厅与 2 室 2 厅为主。与小伙伴抱团租房是最好的选择了,不然与不认识的人一起合租可能会发生一系列让你不舒服的事情。字体越大,代表户型数量越多。
在这里插入图片描述
在这里插入图片描述
租房面积统计,其中 30 - 90 平方米的租房占大多数——所以,组团租房是最好的选择。
在这里插入图片描述
然后是租房描述词云,字体越大,标识出现的次数越多。其中【精装修】占据了很大的部分,说明长租公寓也占领了很大一部分市场。
在这里插入图片描述

爬虫思路

先爬取房某下深圳各个板块的数据,然后存进 MongoDB 数据库,最后再进行数据分析。
在这里插入图片描述
数据库部分数据:

/* 1 */
{"_id" : ObjectId("5b827d5e8a4c184e63fb1325"),"traffic" : "距沙井电子城公交站约567米。",//交通描述"address" : "宝安-沙井-名豪丽城",//地址"price" : 3100,//价格"area" : 110,//面积"direction" : "朝南\r\n            ",//朝向"title" : "沙井 名豪丽城精装三房 家私齐拎包住 高层朝南随时看房",//标题"rooms" : "3室2厅",//户型"region" : "宝安"//地区
}

爬虫技术分析和代码实现

爬虫涉及到的技术工具如下:

  • 请求库:requests
  • HTML 解析:Beautiful Soup
  • 词云:wordcloud
  • 数据可视化:pyecharts
  • 数据库:MongoDB
  • 数据库连接:PyMongo

首先右键网页,查看页面源码,找出我们要爬取的部分。
在这里插入图片描述
代码实现,由于篇幅原因只展示主要代码:(获取一个页面的数据)

'''
更多Python学习资料以及源码教程资料,可以在群1136201545免费获取
'''def getOnePageData(self, pageUrl, reginon="不限"):rent = self.getCollection(self.region)self.session.headers.update({'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.84 Safari/537.36'})res = self.session.get(pageUrl)soup = BeautifulSoup(res.text, "html.parser")divs = soup.find_all("dd", attrs={"class": "info rel"})  # 获取需要爬取得 divfor div in divs:ps = div.find_all("p")try:  # 捕获异常,因为页面中有些数据没有被填写完整,或者被插入了一条广告,则会没有相应的标签,所以会报错for index, p in enumerate(ps):  # 从源码中可以看出,每一条 p 标签都有我们想要的信息,故在此遍历 p 标签,text = p.text.strip()print(text)  # 输出看看是否为我们想要的信息print("===================================")# 爬取并存进 MongoDB 数据库roomMsg = ps[1].text.split("|")# rentMsg 这样处理是因为有些信息未填写完整,导致对象报空area = roomMsg[2].strip()[:len(roomMsg[2]) - 2]rentMsg = self.getRentMsg(ps[0].text.strip(),roomMsg[1].strip(),int(float(area)),int(ps[len(ps) - 1].text.strip()[:len(ps[len(ps) - 1].text.strip()) - 3]),ps[2].text.strip(),ps[3].text.strip(),ps[2].text.strip()[:2],roomMsg[3],)rent.insert(rentMsg)except:continue

数据分析:

'''
更多Python学习资料以及源码教程资料,可以在群1136201545免费获取
'''# 求一个区的房租单价(平方米/元)def getAvgPrice(self, region):areaPinYin = self.getPinyin(region=region)collection = self.zfdb[areaPinYin]totalPrice = collection.aggregate([{'$group': {'_id': '$region', 'total_price': {'$sum': '$price'}}}])totalArea = collection.aggregate([{'$group': {'_id': '$region', 'total_area': {'$sum': '$area'}}}])totalPrice2 = list(totalPrice)[0]["total_price"]totalArea2 = list(totalArea)[0]["total_area"]return totalPrice2 / totalArea2# 获取各个区 每个月一平方米需要多少钱def getTotalAvgPrice(self):totalAvgPriceList = []totalAvgPriceDirList = []for index, region in enumerate(self.getAreaList()):avgPrice = self.getAvgPrice(region)totalAvgPriceList.append(round(avgPrice, 3))totalAvgPriceDirList.append({"value": round(avgPrice, 3), "name": region + "  " + str(round(avgPrice, 3))})return totalAvgPriceDirList# 获取各个区 每一天一平方米需要多少钱def getTotalAvgPricePerDay(self):totalAvgPriceList = []for index, region in enumerate(self.getAreaList()):avgPrice = self.getAvgPrice(region)totalAvgPriceList.append(round(avgPrice / 30, 3))return (self.getAreaList(), totalAvgPriceList)# 获取各区统计样本数量def getAnalycisNum(self):analycisList = []for index, region in enumerate(self.getAreaList()):collection = self.zfdb[self.pinyinDir[region]]print(region)totalNum = collection.aggregate([{'$group': {'_id': '', 'total_num': {'$sum': 1}}}])totalNum2 = list(totalNum)[0]["total_num"]analycisList.append(totalNum2)return (self.getAreaList(), analycisList)# 获取各个区的房源比重def getAreaWeight(self):result = self.zfdb.rent.aggregate([{'$group': {'_id': '$region', 'weight': {'$sum': 1}}}])areaName = []areaWeight = []for item in result:if item["_id"] in self.getAreaList():areaWeight.append(item["weight"])areaName.append(item["_id"])print(item["_id"])print(item["weight"])# print(type(item))return (areaName, areaWeight)# 获取 title 数据,用于构建词云def getTitle(self):collection = self.zfdb["rent"]queryArgs = {}projectionFields = {'_id': False, 'title': True}  # 用字典指定需要的字段searchRes = collection.find(queryArgs, projection=projectionFields).limit(1000)content = ''for result in searchRes:print(result["title"])content += result["title"]return content# 获取户型数据(例如:3 室 2 厅)def getRooms(self):results = self.zfdb.rent.aggregate([{'$group': {'_id': '$rooms', 'weight': {'$sum': 1}}}])roomList = []weightList = []for result in results:roomList.append(result["_id"])weightList.append(result["weight"])# print(list(result))return (roomList, weightList)# 获取租房面积def getAcreage(self):results0_30 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 0, '$lte': 30}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results30_60 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 30, '$lte': 60}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results60_90 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 60, '$lte': 90}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results90_120 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 90, '$lte': 120}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results120_200 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 120, '$lte': 200}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results200_300 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 200, '$lte': 300}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results300_400 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 300, '$lte': 400}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results400_10000 = self.zfdb.rent.aggregate([{'$match': {'area': {'$gt': 300, '$lte': 10000}}},{'$group': {'_id': '', 'count': {'$sum': 1}}}])results0_30_ = list(results0_30)[0]["count"]results30_60_ = list(results30_60)[0]["count"]results60_90_ = list(results60_90)[0]["count"]results90_120_ = list(results90_120)[0]["count"]results120_200_ = list(results120_200)[0]["count"]results200_300_ = list(results200_300)[0]["count"]results300_400_ = list(results300_400)[0]["count"]results400_10000_ = list(results400_10000)[0]["count"]attr = ["0-30平方米", "30-60平方米", "60-90平方米", "90-120平方米", "120-200平方米", "200-300平方米", "300-400平方米", "400+平方米"]value = [results0_30_, results30_60_, results60_90_, results90_120_, results120_200_, results200_300_, results300_400_, results400_10000_]return (attr, value)

数据展示:

'''
更多Python学习资料以及源码教程资料,可以在群1136201545免费获取
'''# 展示饼图def showPie(self, title, attr, value):from pyecharts import Piepie = Pie(title)pie.add("aa", attr, value, is_label_show=True)pie.render()# 展示矩形树图def showTreeMap(self, title, data):from pyecharts import TreeMapdata = datatreemap = TreeMap(title, width=1200, height=600)treemap.add("深圳", data, is_label_show=True, label_pos='inside', label_text_size=19)treemap.render()# 展示条形图def showLine(self, title, attr, value):from pyecharts import Barbar = Bar(title)bar.add("深圳", attr, value, is_convert=False, is_label_show=True, label_text_size=18, is_random=True,# xaxis_interval=0, xaxis_label_textsize=9,legend_text_size=18, label_text_color=["#000"])bar.render()# 展示词云def showWorkCloud(self, content, image_filename, font_filename, out_filename):d = path.dirname(__name__)# content = open(path.join(d, filename), 'rb').read()# 基于TF-IDF算法的关键字抽取, topK返回频率最高的几项, 默认值为20, withWeight# 为是否返回关键字的权重tags = jieba.analyse.extract_tags(content, topK=100, withWeight=False)text = " ".join(tags)# 需要显示的背景图片img = imread(path.join(d, image_filename))# 指定中文字体, 不然会乱码的wc = WordCloud(font_path=font_filename,background_color='black',# 词云形状,mask=img,# 允许最大词汇max_words=400,# 最大号字体,如果不指定则为图像高度max_font_size=100,# 画布宽度和高度,如果设置了msak则不会生效# width=600,# height=400,margin=2,# 词语水平摆放的频率,默认为0.9.即竖直摆放的频率为0.1prefer_horizontal=0.9)wc.generate(text)img_color = ImageColorGenerator(img)plt.imshow(wc.recolor(color_func=img_color))plt.axis("off")plt.show()wc.to_file(path.join(d, out_filename))# 展示 pyecharts 的词云def showPyechartsWordCloud(self, attr, value):from pyecharts import WordCloudwordcloud = WordCloud(width=1300, height=620)wordcloud.add("", attr, value, word_size_range=[20, 100])wordcloud.render()

不管怎样,最近房租的暴涨真得让人无能为力。应对外界条件的变动,我们还是应该提升自己的硬实力,这样才能提升自己的生存能力。

这篇关于Python 爬取了 1.7 万条房产数据,告诉你深圳生存压力有多大!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/725585

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常